精英家教网 > 高中数学 > 题目详情
19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{4\sqrt{6}}}{3}$

分析 由已知利用同角三角函数基本关系式可求sinB,进而利用三角形面积公式即可计算得解.

解答 解:∵$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{2\sqrt{2}}{3}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{3}×2×\frac{2\sqrt{2}}{3}$=$\frac{2\sqrt{6}}{3}$.
故选:C.

点评 本题主要考查了同角三角函数基本关系式,三角形面积公式在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex+$\frac{1}{ax}$(a≠0,x≠0)在x=1处的切线与直线(e-1)x-y+2017=0平行.
(Ⅰ)求a的值并讨论函数y=f(x)在x∈(-∞,0)上的单调性.
(Ⅱ)若函数g(x)=f(x)-$\frac{1}{x}$-x+m+1(m为常数)有两个零点x1,x2(x1<x2).?求实数m的取值范围;
?求证:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\frac{1}{3}$x3-x+c的图象与x轴恰有两个公共点,则c=(  )
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{{\sqrt{{S_n}•{S_{n+1}}}}}$,n∈N*,记数列{bn}的前n项和为Tn,证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x2
(Ⅰ) 求f(x)的单调区间;
(Ⅱ) 若f(x)的定义域为[-1,m]时,值域为[-4,0],求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设{an}是公比为正数的等比数列,a1=2,a3-4=a2,则a3=(  )
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分图象如图所示,则cos(5ωφ)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{x}{x-1}$≥-1的解集为(  )
A.(-∞,$\frac{1}{2}$]∪(1,+∞)B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,1)∪(1,+∞)D.(-∞,$\frac{1}{2}$]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的各项均为正数,Sn表示数列{an}的前n项的和,且$2{S_n}=a_n^2+{a_n}$
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案