分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,作差得到$g({x_1})-g(-{x_2})=g({x_2})-g(-{x_2})={e^{x_2}}-{e^{-{x_2}}}-2{x_2}$,令m(x)=ex-e-x-2x(x>0),根据函数的单调性证明即可.
解答 解:(Ⅰ)∵$f'(x)={e^x}-\frac{1}{{a{x^2}}}$,
∴$f'(1)=e-\frac{1}{a}=e-1$,∴a=1,
∴$f'(x)={e^x}-\frac{1}{x^2}=\frac{{{x^2}{e^x}-1}}{x^2}$,
令h(x)=x2ex-1,h'(x)=(2x+x2)ex,
h(x)在(-∞,-2)上单调递增,在(-2,0)上单调递减,
所以x∈(-∞,0)时,$h(x)≤h(-2)=\frac{4}{e^2}-1<0$,
即x∈(-∞,0)时,f'(x)<0,
所以函数y=f(x)在x∈(-∞,0)上单调递减.
(Ⅱ)?由条件可知,g(x)=ex-x+m+1,g'(x)=ex-1,
∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<-2.
?证明:由上可知,x1<0<x2,∴-x2<0,
∴$g({x_1})-g(-{x_2})=g({x_2})-g(-{x_2})={e^{x_2}}-{e^{-{x_2}}}-2{x_2}$,
令m(x)=ex-e-x-2x(x>0),则m'(x)=ex+e-x-2>0,
所以m(x)>m(0)即g(x1)>g(-x2)
又g(x)在(-∞,0)上单调递减,
所以x1<-x2,即x1+x2<0.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| f(x)=Asin(ωx+φ), | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢打篮球 | 不喜欢打篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 |
| p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢旅游 | 不喜欢旅游 | 合计 | |
| 女性 | |||
| 男性 | |||
| 合计 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{2\sqrt{6}}}{3}$ | D. | $\frac{{4\sqrt{6}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com