精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ex+$\frac{1}{ax}$(a≠0,x≠0)在x=1处的切线与直线(e-1)x-y+2017=0平行.
(Ⅰ)求a的值并讨论函数y=f(x)在x∈(-∞,0)上的单调性.
(Ⅱ)若函数g(x)=f(x)-$\frac{1}{x}$-x+m+1(m为常数)有两个零点x1,x2(x1<x2).?求实数m的取值范围;
?求证:x1+x2<0.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,作差得到$g({x_1})-g(-{x_2})=g({x_2})-g(-{x_2})={e^{x_2}}-{e^{-{x_2}}}-2{x_2}$,令m(x)=ex-e-x-2x(x>0),根据函数的单调性证明即可.

解答 解:(Ⅰ)∵$f'(x)={e^x}-\frac{1}{{a{x^2}}}$,
∴$f'(1)=e-\frac{1}{a}=e-1$,∴a=1,
∴$f'(x)={e^x}-\frac{1}{x^2}=\frac{{{x^2}{e^x}-1}}{x^2}$,
令h(x)=x2ex-1,h'(x)=(2x+x2)ex
h(x)在(-∞,-2)上单调递增,在(-2,0)上单调递减,
所以x∈(-∞,0)时,$h(x)≤h(-2)=\frac{4}{e^2}-1<0$,
即x∈(-∞,0)时,f'(x)<0,
所以函数y=f(x)在x∈(-∞,0)上单调递减.
(Ⅱ)?由条件可知,g(x)=ex-x+m+1,g'(x)=ex-1,
∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<-2.
?证明:由上可知,x1<0<x2,∴-x2<0,
∴$g({x_1})-g(-{x_2})=g({x_2})-g(-{x_2})={e^{x_2}}-{e^{-{x_2}}}-2{x_2}$,
令m(x)=ex-e-x-2x(x>0),则m'(x)=ex+e-x-2>0,
所以m(x)>m(0)即g(x1)>g(-x2
又g(x)在(-∞,0)上单调递减,
所以x1<-x2,即x1+x2<0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{a}$=1(a>0)与双曲线$\frac{{x}^{2}}{{m}^{2}+2}$+$\frac{{y}^{2}}{{m}^{2}-4}$=1有相同的焦点,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数x、y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$,且3(x-a)+2(y+1)的最大值为5,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.把412(5)化为7进制数为212(7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某同学用“五点法”画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
f(x)=Asin(ωx+φ),05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求y=g(x),x∈(-$\frac{π}{4}$,$\frac{π}{4}$)的单调增区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高中为了解高中学生的性别和喜欢打篮球是否有关,对50名高中学生进行了问卷调查,得到如下列联表:
 喜欢打篮球不喜欢打篮球合计
男生 5 
女生10  
合计   
已知在这50人中随机抽取1人,抽到喜欢打篮球的学生的概率为$\frac{3}{5}$
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.5%的把握认为喜欢打篮球与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 p(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,其左、右焦点分别为F1,F2,左、右顶点分别为A1,A2,上、下顶点分别为B1,B2,四边形A1B1A2B2面积和为4.
(1)求椭圆C的方程;
(2)直线l:y=kx+m与椭圆C交于M,N两点,OM⊥ON(其中O为坐标原点),求直线l被以线段F1,F2为直径的圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:
 喜欢旅游不喜欢旅游合计
女性   
男性   
合计   
(2)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

同步练习册答案