精英家教网 > 高中数学 > 题目详情
15.若随机变量X~N(1,9),则D($\frac{1}{3}$x)的值是(  )
A.1B.3C.9D.$\frac{1}{3}$

分析 由X~N(1,9),得到σ2=D(X)=9,由此利用方差的性质能求出D($\frac{1}{3}x$).

解答 解:X~N(1,9),
∴σ2=D(X)=9,
∴D($\frac{1}{3}x$)=$\frac{1}{9}$D(X)=$\frac{1}{9}×9$=1.
故选:A.

点评 本题考查方差的求法,是基础题,解题时要认真审题,注意离散型随机变量的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,边a,b,c的对角分别为A,B,C,且A,B,C成等差数列,
(1)求$\frac{a+c}{b}$的取值范围;
(2)若AC边上的中线为$\frac{\sqrt{7}}{2}$a,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{2\sqrt{2}}}{3}$,B(0,1)为椭圆的一个顶点,直线l交椭圆于P,Q(异于点B)两点,BP⊥BQ.
(Ⅰ)求椭圆方程;
(Ⅱ)求△BPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=e2x-ax+2(a∈R)
(1)求函数f(x)的单调区间
(2)在曲线y=f(x)上是否存在两点A(x1,y1),B(x2,y2),(x1≠x2),使得该曲线在A,B两点处的切线相交于点P(0,t)?若存在,求实数t的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax-lnx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)-2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:$F'(\frac{{{x_1}+{x_2}}}{2})$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若仅有一个整数x0,使得f(x0)<0,则a的取值范围是(  )
A.[-$\frac{2}{e}$,1)B.[-$\frac{2}{e}$,$\frac{3}{4}$)C.[$\frac{2}{e}$,$\frac{3}{4}$)D.[$\frac{2}{e}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示的几何体的俯视图是由一个圆与它的两条半径组成的图形,若r=1,则该几何体的体积为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a,b∈R,i是虚数单位,且3b+(2a-2)i=1-i,则a+b的值为(  )
A.$-\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$-\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系内,点A(1,2),B(1,3),C(3,6),则三角形ABC面积为1;三角形ABC外接圆标准方程为$(x-5)^{2}+(y-\frac{5}{2})^{2}=\frac{65}{4}$.

查看答案和解析>>

同步练习册答案