【题目】已知正四棱锥
中,
是边长为3的等边三角形,点M是
的重心,过点M作与平面PAC垂直的平面
,平面
与截面PAC交线段的长度为2,则平面
与正四棱椎
表面交线所围成的封闭图形的面积可能为______________.(请将可能的结果序号填到横线上)①2;②
;③3; ④
.
【答案】①③
【解析】
设
,因为
为正四棱锥,易知
平面
,过M作
∥
分别交棱
、
于点T、L,则
平面
,由题意,只需所作的平面
是包含
且与截面PAC交线段的长度为2即可,数形结合,作出截面即可得到答案.
设
,因为
为正四棱锥,易知平面
平面
,又
,平面
平面
,
平面
,所以
平面
,
过M作
∥
分别交棱
、
于点T、L,则
平面
,由题意,
只需所作的平面
是包含
且与截面PAC交线段的长度为2即可,
又
是边长为3的等边三角形,点M是
的重心,过M作
∥
分别交棱
、
于点E、Q,所以
,即
,所以
,
如图1,则平面
为满足题意的平面
,因为
,所以
,所以
,所以
,故①正确;
如图2,过T作
∥
,过L作
∥
,易知平面
为满足题意的平面
,
且
为两个全等的直角梯形,易知T、H分别为GE、EF的中点,所以
,
所以五边形
的面积
,
故③正确.当
∥
与
∥
是完全相同的,所以,综上选①③.
故答案为:①③
![]()
![]()
科目:高中数学 来源: 题型:
【题目】A、B两同学参加数学竞赛培训,在培训期间,他们参加了8次测验,成绩(单位:分)记录如下:
A 71 62 72 76 63 70 85 83
B 73 84 75 73 7
8
76 85
B同学的成绩不慎被墨迹污染(
,
分别用m,n表示).
(1)用茎叶图表示这两组数据,现从A、B两同学中选派一人去参加数学竞赛,你认为选派谁更好?请说明理由(不用计算);
(2)若B同学的平均分为78,方差
,求m,n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的英明领导下,在全国人民的坚定支持下,中国的抗击“新型冠状肺炎”战役取得了阶段性胜利,现在摆在我们大家面前的是有序且安全的复工复产.某商场为了提振顾客的消费信心,对某中型商品实行分期付款方式销售,根据以往资料统计,顾客购买该商品选择分期付款的期数ξ的分布列为
![]()
其中0<a<1,0<b<1.
(1)求购买该商品的3位顾客中,恰有1位选择分4期付款的概率;
(2)商场销售一件该商品,若顾客选择分4期付款,则商场获得的利润为2000元;若顾客选择分5期付款,则商场获得的利润为2500元;若顾客选择分6期付款,则商场获得的利润为3000元,假设该商场销售两件该商品所获得的利润为X(单位:元),
(i)设X=5500时的概率为m,求当m取最大值时,利润X的分布列和数学期望;
(ii)设某数列{xn}满足x1=0.4,xn=a,2xn+1=b,若a<0.25,求n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的两焦点之间的距离为2,两条准线间的距离为8,直线l:y=k(x-m)(m∈R)与椭圆交于P,Q两点.
(1) 求椭圆C的方程;
(2) 设椭圆的左顶点为A,记直线AP,AQ的斜率分别为k1,k2.①若m=0,求k1k2的值;②若k1k2=-
,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位战士参加射击比赛训练.从若干次预赛成绩中随机抽取8次,记录如下:
甲82 81 79 78 95 88 93 84
乙92 95 80 75 83 80 90 85
![]()
(1)用茎叶图表示这两组数据,并分别求两组数据的中位数;
(2)现要从中选派一人参加射击比赛,从统计学的角度考虑,你认为选派哪位战士参加合适?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级共有50名同学(男女各占一半),为弘扬传统文化,班委组织了“古诗词男女对抗赛”,将同学随机分成25组,每组男女同学各一名,每名同学均回答同样的五个不同问题,答对一题得一分,答错或不答得零分,总分5分为满分.最后25组同学得分如下表:
组别号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同学得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同学得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
组别号 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同学得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同学得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 | |
(I)完成
列联表,并判断是否有90%的把握认为“该次对抗赛是否得满分”与“同学性别”有关;
(Ⅱ)某课题研究小组假设各组男女同学分差服从正态分布
,首先根据前20组男女同学的分差确定
和
,然后根据后面5组同学的分差来检验模型,检验方法是:记后面5组男女同学分差与
的差的绝对值分别为
,若出现下列两种情况之一,则不接受该模型,否则接受该模型.①存在
;②记满足
的i的个数为k,在服从正态分布
的总体(个体数无穷大)中任意取5个个体,其中落在区间
内的个体数大于或等于k的概率为P,
.
试问该课题研究小组是否会接受该模型.
| 0.10 | 0.05 | 0.010 |
| 2.706 | 3.841 | 6.635 |
参考公式和数据:![]()
,
;若
,有
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+blnx(a,b∈R),曲线y=f(x)在点(1,f(1))处的切线方程为2x﹣y﹣2=0.
(1)判断f(x)在定义域内的单调性,并说明理由;
(2)若对任意的x∈(1,+∞),不等式f(x)≤m(ex﹣1﹣1)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前n项和为
,![]()
(1)求证:数列
是等比数列;
(2)若
,是否存在q的某些取值,使数列
中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由.
(3)若
,是否存在
,使数列
中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com