分析 由题意画出以|$\overrightarrow{a}$|,|$\overrightarrow{b}$|为邻边做平行四边形ABCD,然后利用正弦定理求解.
解答 解:以|$\overrightarrow{a}$|,|$\overrightarrow{b}$|为邻边做平行四边形ABCD,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,![]()
则$\overrightarrow{BD}$=$\overrightarrow{b}-\overrightarrow{a}$,由题意∠ADB=30°,设∠ABD=θ,
∵|$\overrightarrow{a}$|=2,
∴在△ABD中,由正弦定理可得,$\frac{AB}{sin30°}$=$\frac{AD}{sinθ}$,
∴AD=4sinθ≤4.
即|$\overrightarrow{b}$|的最大值为4.
故答案为:4.
点评 本题考查了向量的平行四边形法则的应用,考查三角形中正弦定理的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{m}$ | B. | $\frac{2n}{m}$ | C. | $\frac{3n}{m}$ | D. | $\frac{2m}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 5 | 8 | 9 | 11 |
| y | 12 | 10 | 8 | 8 | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-2-\sqrt{5},-2+\sqrt{5}})$ | B. | $({-4-\sqrt{5},-4+\sqrt{5}})$ | C. | $({-4-3\sqrt{5},-4-\sqrt{5}})$ | D. | $({-4+\sqrt{5},-4+3\sqrt{5}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)>g(x) | B. | f(x)<g(x) | C. | f(x)+g(b)>g(x)+f(b) | D. | f(x)+g(a)>g(x)+f(a) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对立事件 | B. | 必然事件 | ||
| C. | 不可能事件 | D. | 互斥但不对立事件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com