精英家教网 > 高中数学 > 题目详情

届亚运会于 日至日在中国广州进行,为了做好接待工作,组委会招募了 名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:

 
喜爱运动
不喜爱运动
总计

10
 
16

6
 
14
总计
 
 
30
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少?
附:K2=
P(K2k)
0.100
0.050
0.025
0.010
0.001
k
2.706
3.841
5.024
6.635
10.828
 

(1) 2×2 列联表如下:

 
喜爱运动
不喜爱运动
总计

10
6
16

6
8
14
总计
16
14
30
(2)在犯错的概率不超过 0.10 的前提下不能判断喜爱运动与性别有关.
(3)

解析试题分析:(1) 2×2 列联表如下:

 
喜爱运动
不喜爱运动
总计

10
6
16

6
8
14
总计
16
14
30
           2分
(2)假设:是否喜爱运动与性别无关,由已知数据可求得:

因此,在犯错的概率不超过 0.10 的前提下不能判断喜爱运动与性别有关.    6分
(3)喜欢运动的女志愿者有6 人,设分别为ABCDEF,其中 ABCD 会外语,则从这6 人中任取2 人有 ABACADAEAFBCBDBEBFCDCECFDEDFEF共15 种取法, 9分
其中两人都会外语的有ABACADBCBDCD 共 6 种.          11分
故抽出的志愿者中 2 人都能胜任翻译工作的概率是.         12分
考点:本题考查了独立性检验的运用
点评:解决本题的步骤是,要先根据已知数据绘制列联表,然后由表格中的数据利用公式求出的值,再由给定的数表来确定两者有关的可靠程度。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;
(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对人们的休闲方式的一次调查中,共调查了人,其中女性人,男性人.女性中有人主要的休闲方式是看电视,另外人主要的休闲方式是运动;男性中有人主要的休闲方式是看电视,另外人主要的休闲方式是运动.
(1)根据以上数据建立一个的列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:

PM2.5日均值
(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
频数
3
1
1
1
1
3
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:

组号
 
分组
 
频数
 
频率
 
第一组
 
 [230,235)
 
8
 
0.16
 
第二组
 
 [235,240)
 

 
0.24
 
第三组
 
 [240,245)
 
15
 

 
第四组
 
 [245,250)
 
10
 
0.20
 
第五组
 
 [250,255]
 
5
 
0.10
 
合             计
 
50
 
1.00
 
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲、乙两组各四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(1)求甲组同学植树棵树的平均数和方差;(参考公式:
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.

(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)根据频率分布直方图,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
数学成绩
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理成绩
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
 
数学成绩优秀
数学成绩不优秀
 合  计
物理成绩优秀
 
 
 
物理成绩不优秀
 
 
 
合  计
 
 
20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
假设有两个分类变量,它们的值域分别为,其样本频数列联表(称为列联表)为:
 


合计








合计



则随机变量,其中为样本容量;
②独立检验随机变量的临界值参考表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:

资金投入x
2
3
4
5
6
利润y
2
3
5
6
9
(Ⅰ)画出数据对应的散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程=x+;
(Ⅲ)现投入资金10万元,估计获得的利润为多少万元?

查看答案和解析>>

同步练习册答案