精英家教网 > 高中数学 > 题目详情

某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.

(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)根据频率分布直方图,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。

(Ⅰ)0.3  (Ⅱ)71  (Ⅲ) X的分布列为:

X
0
1
2
P



 
EX=0×+1×+2×.  

解析试题分析:(Ⅰ)设分数在内的频率为x,根据频率分布直方图,
则有,可得x="0.3."
所以频率分布直方图如图所示:
  
(Ⅱ)平均分为:
                 
(Ⅲ)学生成绩在[40,70)的有0.4×60=24人,在[70,100]的有0.6×60=36人,
且X的可能取值是0,1,2.

所以X的分布列为:

X
0
1
2
P



 
所以EX=0×+1×+2×.         
考点:频率分布直方图;众数、中位数、平均数
点评:本题主要考查了频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5
(1)回归分析,并求出y关于x的线性回归方程=bx+a;
(2)试预测加工10个零件需要多少时间?

n-2
1
2
3
4
小概率0.05
0.997
0.950
0.878
0.811
小概率0.01
1.000
0.990
0.959
0.917

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.

(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.

分数段
 

 

 

 

 

 

 

 

 

 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

届亚运会于 日至日在中国广州进行,为了做好接待工作,组委会招募了 名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:

 
喜爱运动
不喜爱运动
总计

10
 
16

6
 
14
总计
 
 
30
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少?
附:K2=
P(K2k)
0.100
0.050
0.025
0.010
0.001
k
2.706
3.841
5.024
6.635
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.

(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;

区间
[25,30)
[30,35)
[35,40)
[40,45)
[45,50]
人数
50
50

150

(Ⅱ) 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(III)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5(微克/立方米)
频数(天)
频率
第一组
(0,15]
4
0.1
第二组
(15,30]
12
0.3
第三组
(30,45]
8
0.2
第四组
(45,60]
8
0.2
第三组
(60,75]
4
0.1
第四组
(75,90)
4
0.1
(Ⅰ)写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(Ⅲ)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
某零售店近五个月的销售额和利润额资料如下表:

商店名称
A
B
C
D
E
销售额 (千万元)
3
5
6
7
9
9
利润额(百万元)
2
3
3
4
5
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了了解中学生的体能情况,抽取了某中学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.

(1) 求第四小组的频率和参加这次测试的学生人数;
(2) 在这次测试中,学生跳绳次数的中位数落在第几小组内?
(3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?

查看答案和解析>>

同步练习册答案