精英家教网 > 高中数学 > 题目详情

(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

(1) 
(Ⅱ) 

解析试题分析:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,
所以平均数为 
方差为
(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A2,B2),(A3,B3),(A1,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4),
用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为……12分
考点:本题主要考查茎叶图的概念,平均数及方差计算,古典概型概率的计算。
点评:典型题,统计中的抽样方法,频率直方图,平均数、方差计算,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:

x
2
4
5
6
8
y
30
40
60
50
70
其中
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告支出为10百万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:

组号
 
分组
 
频数
 
频率
 
第一组
 
 [230,235)
 
8
 
0.16
 
第二组
 
 [235,240)
 

 
0.24
 
第三组
 
 [240,245)
 
15
 

 
第四组
 
 [245,250)
 
10
 
0.20
 
第五组
 
 [250,255]
 
5
 
0.10
 
合             计
 
50
 
1.00
 
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.

(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)根据频率分布直方图,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.

(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个至多一个“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.

 
甲班
(A方式)
乙班
(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
附:

0.25
0.15
0.10
0.05
0.025
k
1.323
2.072
2. 706
3. 841
5. 024
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
数学成绩
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理成绩
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
 
数学成绩优秀
数学成绩不优秀
 合  计
物理成绩优秀
 
 
 
物理成绩不优秀
 
 
 
合  计
 
 
20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
假设有两个分类变量,它们的值域分别为,其样本频数列联表(称为列联表)为:
 


合计








合计



则随机变量,其中为样本容量;
②独立检验随机变量的临界值参考表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)我校高二(1)班男同学有45名,女同学有15名,按照分层抽样的方法组建了一个4人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.
某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)

(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;
(II) 以这9天的PM2.   5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)某种产品的广告费支出x与消费额y(单位:百万元)之间有如下对应数据:

x
 
2
 
4
 
5
 
6
 
8
 
y
 
30
 
40
 
60
 
50
 
70
 
(1)求线性回归方程;
(2)预测当广告费支出为700万元时的销售额.

查看答案和解析>>

同步练习册答案