精英家教网 > 高中数学 > 题目详情


某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.

(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个至多一个“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.

 
甲班
(A方式)
乙班
(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
附:

0.25
0.15
0.10
0.05
0.025
k
1.323
2.072
2. 706
3. 841
5. 024
 

(1)(2)列联表见解析,有90%的把握认为:“成绩优秀”与教学方式有关

解析试题分析:(1)记抽出的2个至多一个“成绩优秀”为事件A,则
故抽出的2个至多一个“成绩优秀”的概率为.                                    4分
(2) 列联表为

 
甲班
(A方式)
乙班
(B方式)
总计
成绩优秀
1
5
6
成绩不优秀
19
15
34
总计
20
20
40
7分
的观测值,                            12分
因为 
所以有90%的把握认为:“成绩优秀”与教学方式有关.                               13分
考点:本小题主要考查随机事件的概率和独立性检验的应用.
点评:求解随机事件的概率要灵活运用排列组合运算公式,解决独立性检验时要注意回答的准确性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),
结果用二维等高条形图表示,如图.

(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?


0.10
0.05
0.01

2.706
3.841
6.635
(参考数据与公式:

 


合计
关心
 
 
500
不关心
 
 
500
合计
 
524
1000
 
(2)已知校团委有青年志愿者100名,他们已参加活动的情况记录如下:
参加活动次数
1
2
3
人数
10
50
40
 
(i)从志愿者中任选两名学生,求他们参加活动次数恰好相等的概率;
(ii)从志愿者中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.

(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;

区间
[25,30)
[30,35)
[35,40)
[40,45)
[45,50]
人数
50
50

150

(Ⅱ) 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(III)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;
(II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某大学体育学院在2012年新招的大一学生中,随机抽取了      40名男生,他们的身高(单位:cm)情况共分成五组:第1组[175,180),第 2 组[180,185),第 3 组 [185,190),第 4 组[190,195),第 5 组[195,200) .得到的频率分布直方图(局部)如图所示,同时规定身高在185cm以上(含185cm)的学生成为组建该校篮球队的“预备生”.

(I)求第四组的频率并补布直方图;
(II)如果用分层抽样的方法从“预备生”和“非预备生”中选出5人,再从这5人中随机选2人,那么至少有1人是“预备生”的概率是多少?
(III)若该校决定在第4,5组中随机抽取2名学生接受技能测试,第5组中有ζ名学生接受测试,试求ζ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世卫组织设定的最宽限值,日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),若从这6天的数据中随机抽出2天.

(Ⅰ)求恰有一天空气质量超标的概率;
(Ⅱ)求至多有一天空气质量超标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,…,后得到如图的频率分布直方图.

(1)求图中实数的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级
期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

同步练习册答案