精英家教网 > 高中数学 > 题目详情

通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:

资金投入x
2
3
4
5
6
利润y
2
3
5
6
9
(Ⅰ)画出数据对应的散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程=x+;
(Ⅲ)现投入资金10万元,估计获得的利润为多少万元?

(1)
 
(2) =1.7x-1.8
(3) 投入资金10万元,估计获得的利润为15.2万元

解析试题分析:解:(Ⅰ)由x、y的数据可得对应的散点图如图;
  4分
(Ⅱ) =4,
=5,  6分


=1.7,  8分
所以=-1.8,  9分
=1.7x-1.8.   10分
(Ⅲ)当x=10万元时, =15.2万元,
所以投入资金10万元,估计获得的利润为15.2万元.  12分
考点:本试题考查了回归方程的知识点。
点评:对于线性回归方程要明确a,b之间的关系式, ,通过已知的数据得到x,y的均值,以及最小二乘法得到a,b的值,进而得到方程,并能运用方程解决实际问题,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

届亚运会于 日至日在中国广州进行,为了做好接待工作,组委会招募了 名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:

 
喜爱运动
不喜爱运动
总计

10
 
16

6
 
14
总计
 
 
30
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取名负责翻译工作,则抽出的志愿者中人都能胜任翻译工作的概率是多少?
附:K2=
P(K2k)
0.100
0.050
0.025
0.010
0.001
k
2.706
3.841
5.024
6.635
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
某零售店近五个月的销售额和利润额资料如下表:

商店名称
A
B
C
D
E
销售额 (千万元)
3
5
6
7
9
9
利润额(百万元)
2
3
3
4
5
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:

尺寸






甲机床零件频数
2
3
20
20
4
1
乙机床零件频数
3
5
17
13
8
4
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:

0.25
0.15
0.10
0.05
0.025
0.010

1.323
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日  期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差(°C)
10
11
13
12
8
6
就诊人数(个)
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(Ⅰ)求选取的组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是月与月的两组数据,请根据月份的数据,求出关于的线性回归方程;(其中
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的.试问该小组所得线性回归方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102, 101, 99, 98, 103, 98, 99;
乙:110, 115, 90, 85, 75, 115, 110。
(Ⅰ)这种抽样方法是哪一种?
(Ⅱ)将这两组数据用茎叶图表示出来;
(Ⅲ)将两组数据比较:说明哪个车间的产品较稳定。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了了解中学生的体能情况,抽取了某中学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.

(1) 求第四小组的频率和参加这次测试的学生人数;
(2) 在这次测试中,学生跳绳次数的中位数落在第几小组内?
(3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
 
PM2.5(微克/立方米)
 
频数(天)
 
频率
 
第一组
 
(0,15]
 
4
 
0.1
 
第二组
 
(15,30]
 
12
 
0.3
 
第三组
 
(30,45]
 
8
 
0.2
 
第四组
 
(45,60]
 
8
 
0.2
 
第三组
 
(60,75]
 
4
 
0.1
 
第四组
 
(75,90)
 
4
 
0.1
 
(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.

(1)下表是年龄的频数分布表,求正整数的值;

区间
[25,30)
[30,35)
[35,40)
[40,45)
[45,50]
人数
50
50

150

 
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

同步练习册答案