精英家教网 > 高中数学 > 题目详情
(2013•济南一模)已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且|AB|=
3
,则
OA
OB
的值是(  )
分析:直线与圆有两个交点,知道弦长、半径,不难确定∠AOB的大小,即可求得
OA
OB
的值.
解答:解:取AB的中点C,连接OC,|AB|=
3
,则AC=
3
2
,OA=1
∴sin (
1
2
∠ AOB)
=sin∠AOC=
AC
OA
=
3
2

所以:∠AOB=120°
OA
OB
=1×1×cos120°=-
1
2

故选A.
点评:本题主要考查了直线和圆的方程的应用,以及向量的数量积公式的应用,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南一模)“a=1”是“函数f(x)=|x-a|在区间[2,+∞)上为增函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知实数x,y满足
y≥1
y≤2x-1
x+y≤8
,则目标函数z=x-y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)等差数列{an}中,a2+a8=4,则它的前9项和S9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知抛物线y2=4x的焦点F恰好是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点,且渐近线方程为y=±
3
x,则双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)函数y=sin(
π2
x+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,则tan∠APB=
-2
-2

查看答案和解析>>

同步练习册答案