精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(1)的值是(  )
A.3B.-3C.-1D.1
因为函数f(x)是R上的奇函数,所以有f(-0)=-f(0),即f(0)=-f(0),所以f(0)=0.
又当x≥0时,f(x)=2x+2x+b,所以f(0)=20+2×0+b=0,解得:b=-1.
所以,f(x)=2x+2x-1.
则f(1)=21+2×1-1=3.
所以,f(1)的值是3.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,f(x)在区间[0,3]上是增函数,则f(x)在[-9,9]上零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式|f(x-2)|>2的解集是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的奇函数,且f(1)=1,那么f(-1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的偶函数.
(1)证明:f(x)=f(|x|)
(2)若当x≥0时,f(x)是单调函数,求满足f(x)=f(
x+3x+4
)
的所有x之和.

查看答案和解析>>

同步练习册答案