精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax2+bx+c(a,b,c∈R).
(1)若函数f(x)在x=1或x=3处取得极值,试求a,b的值;
(2)在(1)的条件下,当x∈[-2,5]时,f(x)<c2恒成立,求c的取值范围.
(1)∵函数f(x)在x=1或x=3处取得极值
∴f'(1)=0,f'(3)=0…(1分)
又∵f'(x)=3x2-2ax+b
f′(1)=3-2a+b=0
f′(3)=27-6a+b=0
…(2分)
∴a=6,b=9…(3分)
经检验,当a=6,b=9时,函数f(x)在x=1或x=3处取得极值    …(4分)
∴a=6,b=9…(5分)
(2)由(1)得所求的函数解析式为f(x)=x3-6x2+9x+c;
∵当x∈[-2,5]时,f(x)<c2恒成立,
∴x3-6x2+9x+c<c2,对x∈[-2,5]恒成立,
∴c2-c>x3-6x2+9x,∴c2-c>(x3-6x2+9x)max
设g(x)=x3-6x2+9x,
g′(x)=3x2-12x+9=3(x-3)(x-1),
列表:
x (-2,1) 1 (1,3) 3 (3,5)
g′(x) + 0 - 0 +
g(x) 极大值4 极小值0
且g(-2)=-50,g(5)=20,
故函数g(x)的g(x)最大值=f(5)=20,
∴c2-c>20,解得c<-4或c>5.
故c的取值范围是:c<-4或c>5.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案