分析 对称轴分为是x轴和y轴两种情况,分别设出标准方程为y2=-2px和x2=2py,然后将M点坐标代入即可求出抛物线标准方程.
解答 解:(1)抛物线的顶点在坐标原点,对称轴是x轴,并且经过点P(-2,2$\sqrt{2}$),
设它的标准方程为y2=-2px(p>0)
∴8=4p,解得p=2,
∴y2=2x.
(2)抛物线的顶点在坐标原点,对称轴是y轴,并且经过点P(-2,2$\sqrt{2}$),
设它的标准方程为x2=2py(p>0)
∴4=4$\sqrt{2}$p,
解得:p=$\frac{\sqrt{2}}{2}$.
∴x2=$\sqrt{2}$y.
故答案为:y2=2x或x2=$\sqrt{2}$y.
点评 本题考查了抛物线的标准方程,解题过程中要注意对称轴是x轴和y轴两种情况作答,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{\sqrt{5}}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{3}$$\overrightarrow{AB}$ | B. | $\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{AB}$ | C. | $\frac{1}{6}$$\overrightarrow{AC}$+$\frac{1}{2}\overrightarrow{AB}$ | D. | $\frac{1}{6}$$\overrightarrow{AC}$+$\frac{3}{2}$$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)∉P,h(x)∈P | B. | g(x)∈P,h(x)∈P | C. | g(x)⊆P,h(x)⊆P | D. | g(x)∈P,h(x)∉P |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=3-x | B. | f(x)=$\frac{1}{x-1}$ | C. | f(x)=x2-2x-1 | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12.5% | B. | 50% | C. | 75% | D. | 87.5% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com