精英家教网 > 高中数学 > 题目详情
4.已知点M是△ABC的边BC的中点,点E在边AC上,且$\overrightarrow{EC}$=2$\overrightarrow{AE}$,则向量$\overrightarrow{EM}$=(  )
A.$\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{3}$$\overrightarrow{AB}$B.$\frac{1}{2}\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{AB}$C.$\frac{1}{6}$$\overrightarrow{AC}$+$\frac{1}{2}\overrightarrow{AB}$D.$\frac{1}{6}$$\overrightarrow{AC}$+$\frac{3}{2}$$\overrightarrow{AB}$

分析 画出图形,利用向量的加减法求解即可.

解答 解:如图:点M是△ABC的边BC的中点,点E在边AC上,
且$\overrightarrow{EC}$=2$\overrightarrow{AE}$,
则向量$\overrightarrow{EM}$=$\overrightarrow{EC}$+$\overrightarrow{CM}$=$\frac{2}{3}\overrightarrow{AC}$$+\frac{1}{2}\overrightarrow{CB}$
=$\frac{2}{3}\overrightarrow{AC}$$+\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{AB})$
=$\frac{1}{2}\overrightarrow{AB}$$+\frac{1}{6}\overrightarrow{AC}$.
故选:C.

点评 本题考查平面向量的加法与减法运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3$\sqrt{3}$,$\frac{π}{2}$),B(3,$\frac{π}{3}$),圆C的方程为ρ=2cosθ.
(1)求在平面直角坐标系xOy中圆C的标准方程;
(2)已知P为圆C上的任意一点,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD是圆O的内接四边形,AB是圆O的直径,BC=CD,AD的延长线与BC的延长线交于点E,过C作CF⊥AE,垂足为点F
(Ⅰ)证明:CF是圆O的切线;
(Ⅱ)若BC=4,AE=9,求CF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图(1),在三角形PCD中,AB为其中位线,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB将三角形PAB折起,使∠PAD=120°,构成四棱锥P-ABCD,构成四棱锥P-ABCD(如图2),且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2
(1)求证:平面BEF⊥平面PAB;
(2)求平面PBC与平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=(2a+1)ex-a$\sqrt{2x+1}$有且仅有两个零点,则实数a的取值范围是(  )
A.(-1,-$\frac{1}{2}$)B.[-1,-$\frac{1}{2}$)C.(-$\frac{1}{2}$,0)D.[-$\frac{1}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{12}{{3+{{sin}^2}θ}}$,直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程;
(2)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.抛物线的顶点在原点,对称轴是坐标轴,且它过点P(-2,2$\sqrt{2}$),则抛物线的方程是y2=2x或x2=$\sqrt{2}$y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$).
(1)求f(x)的单调增区间;
(2)若x0为f(x)的一个零点(0≤x0≤$\frac{π}{2}$),求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司经过测算投资x百万元,投资项目A与产生的经济效益y之间满足:y=f(x)=-$\frac{1}{4}{x^2}$+2x+12,投资项目B产生的经济效益y之间满足:y=h(x)=-$\frac{1}{3}{x^2}$+4x+1.
(1)现公司共有1千万资金可供投资,应如何分配资金使得投资收益总额最大?
(2)投资边际效应函数F(x)=f(x+1)-f(x),当边际值小于0时,不建议投资,则应如何分配投资?

查看答案和解析>>

同步练习册答案