分析 (Ⅰ)运用切线长定理和切线的性质,以及等腰三角形的性质,即可得证;
(Ⅱ)由FC是半圆的切线,运用弦切角定理,运用相似三角形的判定定理可得△FCB∽△FAC,再由相似三角形的性质和圆的切割线定理,计算即可得到所求AF的长.
解答
解:(Ⅰ)由MB,MC分别为半圆的切线,可得MC=MB,
连结BC,由已知得BC⊥CD,
由∠MCB=∠MBC且∠MCB+∠DCM=∠CBM+∠CDM,
即有∠DCM=∠CDM,DM=CM,
又CM=MB,可得DM=DB,M为BD的中点;
(Ⅱ)由FC是半圆的切线,
由弦切角定理有∠FBC=∠FCA,且∠CFB=∠AFC,
∴△FCB∽△FAC,∴$\frac{FC}{AF}$=$\frac{BC}{AC}$,∴FC=$\frac{AF•BC}{AC}$,
由切割线定理知FC2=FA•FB,
∴$\frac{A{F}^{2}•B{C}^{2}}{A{C}^{2}}$=FA•FB,
由AB=4,AC=$\frac{2\sqrt{30}}{5}$,
∴AF=$\frac{A{C}^{2}•FB}{B{C}^{2}}$=$\frac{A{C}^{2}•(FA+4)}{A{B}^{2}-A{C}^{2}}$=$\frac{\frac{24}{5}(AF+4)}{16-\frac{24}{5}}$,
解得AF=3.
点评 本题考查圆的切线的性质、切割线定理和弦切角定理、勾股定理的运用,考查相似三角形的判定定理和性质定理的运用,考查推理和运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com