精英家教网 > 高中数学 > 题目详情
13.作出y=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$x∈(0,2π)的大致图象,根据图象写出单调区间.

分析 根据定义,作出函数的图象,根据图象写出单调区间.

解答 解:y=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$x∈(0,2π)的大致图象(实线部分):

单调增区间[$\frac{π}{4}$,$\frac{π}{2}$],[$\frac{5}{4}$π,2π],单调减区间[0,$\frac{π}{4}$],[$\frac{π}{2}$,$\frac{5}{4}$π].

点评 本题考查函数的图象,根据图象写出单调区间,正确作出函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某机构在某一学校随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me,众数为m0,平均值为$\overline x$,则(  )
A.me=m0=$\overline x$B.me=m0<$\overline x$C.me<m0<$\overline x$D.m0<me<$\overline x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{1{0}^{x},x≤0}\\{2lgx+lg(x+23),x>0}\end{array}\right.$,则f(-1)+f(2)=$\frac{21}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记min{a,b}表示a,b中较小的数,比如min{3,-1}=-1.设函数f(x)=|min{x2,log${\;}_{\frac{1}{16}}$x}|(x>0),若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则x1x2x3的取值范围为(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{4},\frac{1}{2})$C.$(0,\frac{1}{4})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列各题.
(1)已知cos(α+β)=$\frac{1}{3}$,cos(α-β)=$\frac{1}{5}$,求tanαtanβ的值;
(2)已知θ∈[0,$\frac{π}{4}$],sin4θ+cos4θ=$\frac{5}{8}$,求sinθcosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)$(ω>0,-\frac{π}{2}<φ<0)$图象上的任意两点,且角φ的终边经过点$P(1,-\sqrt{3})$,若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)求当$x∈[{0,\frac{π}{3}}]$时,f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足a1=1,且anan+1=2n,n∈N*,则数列{an}的通项公式为(  )
A.an=($\sqrt{2}$)n-1B.an=($\sqrt{2}$)n
C.an=$\left\{\begin{array}{l}{(\sqrt{2})^{n},n为奇数}\\{(\sqrt{2})^{n-1},n为偶数}\end{array}\right.$D.an=$\left\{\begin{array}{l}{(\sqrt{2})^{n-1},n为奇数}\\{(\sqrt{2})^{n},n为偶数}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB为⊙O的直径,∠ABD=90°,线段AD交半圆于点C,过点C作半圆切线与线段BD交于点M,与线段BA延长线交于点F.
(Ⅰ)求证:M为BD的中点;
(Ⅱ)已知AB=4,AC=$\frac{2\sqrt{30}}{5}$,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,已知平面α⊥β,α∩β=l,A、B是直线l上的两点,C、D是平面β内的两点,且DA⊥l,CB⊥l,AD=3,AB=6,CB=6,P是平面α上的一动点,且直线PD、PC与平面α所成角相等,则二面角P-BC-D的余弦值的最小值是(  )
A.$\frac{1}{\sqrt{5}}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

同步练习册答案