精英家教网 > 高中数学 > 题目详情
2.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)$(ω>0,-\frac{π}{2}<φ<0)$图象上的任意两点,且角φ的终边经过点$P(1,-\sqrt{3})$,若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)求当$x∈[{0,\frac{π}{3}}]$时,f(x)的值域.

分析 (1)由已知求得$tanφ=-\sqrt{3}$,结合φ的范围求得φ,再由已知求得ω得答案;
(2)直接由复合函数的单调性求得函数的增区间;
(3)由x的范围求得相位的范围,进一步求得sin($3x-\frac{π}{3}$)的范围得答案.

解答 解:(1)角φ的终边经过点$P(1,-\sqrt{3})$,∴$tanφ=-\sqrt{3}$,
∵$-\frac{π}{2}<φ<0$,∴$φ=-\frac{π}{3}$.
由|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$,得$T=\frac{2π}{3}$,即$\frac{2π}{ω}=\frac{2π}{3}$,∴ω=3.
∴$f(x)=2sin(3x-\frac{π}{3})$;
(2)由$-\frac{π}{2}+2kπ≤3x-\frac{π}{3}≤\frac{π}{2}+2kπ$,得$-\frac{π}{18}+\frac{2kπ}{3}≤x≤\frac{5π}{18}+\frac{2kπ}{3}$,k∈Z,
∴函数f(x)的单调递增区间为$[{-\frac{π}{18}+\frac{2kπ}{3},}\right.\left.{\frac{5π}{18}+\frac{2kπ}{3}}]$(k∈Z);
(3 ) 当$x∈[{0,\frac{π}{3}}]$时,即0≤x≤$\frac{π}{3}$,则0≤3x≤π,
∴$-\frac{π}{3}≤3x-\frac{π}{3}≤\frac{2π}{3}$,
由函数单调性可得:$-\frac{\sqrt{3}}{2}≤sin(3x-\frac{π}{3})≤1$,
∴$-\sqrt{3}≤f(x)≤2$,
∴函数f(x)的值域为$[-\sqrt{3},2]$.

点评 本题考查三角恒等变换中的应用,考查了y=Asin(ωx+φ)型函数的图象和性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,D为BC的中点,满足∠A=$\frac{2π}{3}$,∠BAD+∠C=90°,则∠B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y=ax2(a>0)的焦点到准线的距离为$\frac{1}{2}$,过y轴正半轴上一点C(0,c)作直线,与抛物线交于A,B两点.
(Ⅰ)求a的值;
(Ⅱ)若P为线段AB的中点,过点P作PQ⊥x轴,交直线l:y=-c于点Q,求证:QA,QB为抛物线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx的周期为$\frac{π}{2}$,其中ω>0
(1)求ω的值,并写出函数f(x)的解析式
(2)设△ABC的三边a、b、c依次成等比数列,且函数f(x)的定义域等于b边所对的角B的取值集合,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.作出y=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$x∈(0,2π)的大致图象,根据图象写出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在直角坐标系xOy中,直线C1的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=7+t}\end{array}}\right.(t$为参数),以该直角坐标系的原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C2的方程ρ=-2cosθ+2sinθ.曲线C2上任意一点到直线C1距离的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3$\sqrt{3}$,$\frac{π}{2}$),B(3,$\frac{π}{3}$),圆C的方程为ρ=2cosθ.
(1)求在平面直角坐标系xOy中圆C的标准方程;
(2)已知P为圆C上的任意一点,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=3+5cost}\\{y=5+5sint}\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系得曲线C2的极坐标方程为ρ=2sinθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)将曲线C1向右移动1个单位得到曲线C3,求C3与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图(1),在三角形PCD中,AB为其中位线,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB将三角形PAB折起,使∠PAD=120°,构成四棱锥P-ABCD,构成四棱锥P-ABCD(如图2),且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2
(1)求证:平面BEF⊥平面PAB;
(2)求平面PBC与平面PAD所成的二面角的余弦值.

查看答案和解析>>

同步练习册答案