精英家教网 > 高中数学 > 题目详情
7.在直角坐标系xOy中,直线C1的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=7+t}\end{array}}\right.(t$为参数),以该直角坐标系的原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C2的方程ρ=-2cosθ+2sinθ.曲线C2上任意一点到直线C1距离的最小值为$\sqrt{2}$.

分析 直线C1的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=7+t}\end{array}}\right.(t$为参数),消去t化为普通方程:x-y+6=0.曲线C2的方程ρ=-2cosθ+2sinθ,即ρ2=-2ρcosθ+2ρsinθ,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入即可得出直角坐标方程.求出圆心到直线的距离d,即可得出曲线C2上任意一点到直线C1距离的最小值=d-r.

解答 解:直线C1的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=7+t}\end{array}}\right.(t$为参数),消去t化为普通方程:x-y+6=0.
曲线C2的方程ρ=-2cosθ+2sinθ,即ρ2=-2ρcosθ+2ρsinθ,可得直角坐标方程:x2+y2=-2x+2y,配方化为:(x+1)2+(y-1)2=2,
可得圆心C2(-1,1),半径r=$\sqrt{2}$.
圆心到直线的距离d=$\frac{|-1-1+6|}{\sqrt{2}}$=2$\sqrt{2}$
曲线C2上任意一点到直线C1距离的最小值=2$\sqrt{2}$-$\sqrt{2}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在(0,π)上任取一个数,使得$\sqrt{3}$<tanx的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,一报刊亭根据某报纸以往的销售记录,绘制了日销售量的频率分布直方图,但原始数据遗失,则对日销售量中位数的估计值较为合理的是(  )
A.100B.113C.117D.125

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.利用“二分法”判断方程①3x2-lnx=0;②x+lnx=0;③x3-3x2+3x-4=0;④x+$\frac{1}{x}$=2中在区间(0,1)内有实数解,则方程的序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)$(ω>0,-\frac{π}{2}<φ<0)$图象上的任意两点,且角φ的终边经过点$P(1,-\sqrt{3})$,若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)求当$x∈[{0,\frac{π}{3}}]$时,f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,A,B,C,D四点在同一圆上,AB∥CD,AD的延长线与BC的延长线交于E点.
(1)证明:EC=ED.
(2)延长CD到F,延长DC到G,连接EF、EG,使得EF=EG,证明:A,B,G,F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,PA为四边形ABCD外接圆的切线,CB的延长线交PA于点P,AC与BD相交于点M,PA∥BD
(1)求证:∠ACB=∠ACD;
(2)若PA=3,PC=6,AM=1,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=-cos2x-2tsinx+2t2-6t+2(x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当-1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围.
(3)问a取何值时,方程g(sinx)=a-5sinx在[0,2π)上有两解?

查看答案和解析>>

同步练习册答案