精英家教网 > 高中数学 > 题目详情
已知函数f(x)对一切实数x,y都满足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)当x∈[0,
1
2
]时,f(x)+3<2x+a恒成立,求a的范围.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)利用赋值法,令x=1,y=0,可求得f(0);
(2)令y=0,代入f(x)=f(0)+(x+1)x,即可判断函数的解析式;
(3)f(x)+3<2x+a,得a>x2-x+1,构造函数y=x2-x+1,根据函数的单调性求出函数的在∈[0,
1
2
]的最大值,即可求出a 的范围,
解答: 解:( 1)令x=1,y=0,则f(1)=f(0)+(1+1)×1,∴f(0)=f(1)-2=-2.
(2)令y=0,则f(x)=f(0)+(x+1)x,∴f(x)=x2+x-2.
(3)由f(x)+3<2x+a,得a>x2-x+1.设y=x2-x+1,则y=x2-x+1在(-∞,
1
2
]上是减函数,所以ymax=1,
从而可得a>1.
点评:本题考查抽象函数及其应用,考查函数奇偶性与单调性的综合,突出考查赋值法的应用,考查推理与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=2,a3+a5=10,则a7=(  )
A、5B、8C、10D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为(  ) 
A、9
B、10
C、11
D、
23
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,b,c与面积S的关系是S=
a2+b2-c2
4
,则∠C=(  )
A、30°B、60°
C、45°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0),其图象关于直线x=1对称,f(2)=0,且方程f(x)=x有等根.
(1)求a、b、c的值;
(2)是否存在实数m,n(m<n=,使得函数f(x)在定义域[m,n]上的值域为[3m,3n].如果存在,求出m,n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点到双曲线x2-
y2
3
=1的渐近线的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
3
,且点A(-4,a)在角α的终边上,则a的值是(  )
A、4
3
B、-4
3
C、±4
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1
(1)求f(x)表达式;
(2)若f(|x|)=m有四个不等根,则m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数表示同一函数的是(  )
A、f(x)=
x2
,g(x)=(
x
2
B、f(x)=
x,x≥0
-x,x<0
g(t)=|t|
C、f(x)=1,g(x)=x0
D、f(x)=x+1,g(x)=
x2-1
x-1

查看答案和解析>>

同步练习册答案