精英家教网 > 高中数学 > 题目详情
在△ABC中,三边a,b,c与面积S的关系是S=
a2+b2-c2
4
,则∠C=(  )
A、30°B、60°
C、45°D、90°
考点:余弦定理
专题:解三角形
分析:利用三角形面积公式表示出S,利用余弦定理列出关系式,分别代入已知等式,整理求出tanC的值,即可确定出C的度数.
解答: 解:∵S=
1
2
absinC,a2+b2-c2=2abcosC,
∴代入已知等式S=
a2+b2-c2
4
,得:
1
2
absinC=
2abcosC
4
=
1
2
abcosC,
整理得:sinC=cosC,即tanC=1,
则∠C=45°,
故选:C.
点评:此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知矩阵A=
12
-14

(Ⅰ) 求A的逆矩阵A-1
(Ⅱ)求矩阵A的特征值λ1、λ2和对应的一个特征向量
α1
α2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,D是棱CC1的中点,A1D⊥AB1
(Ⅰ)求AA1的长;
(Ⅱ)求二面角A1-AB1=C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P为⊙O的弦AB上一点,且AP=16,BP=4,连接OP,作PC⊥OP交圆于C,则PC的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x2-4x+3<0},B={x|
2
x-2
>1},C={x|x-m|>2,m∈R}.对于任意x∈A∩B,总有x∈∁UC.
(1)A∩B;
(2)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列满足:a1=1,an+1=
an
an+2
,(n∈N*),若bn+1=(n-λ)(
1
an
+1),b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y都满足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)当x∈[0,
1
2
]时,f(x)+3<2x+a恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(-3,4)为角α终边上的一点,则cos(π+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图关于星星的图案中,第n个图案中星星的个数为an,则数列{an}的一个通项公式是
 

查看答案和解析>>

同步练习册答案