精英家教网 > 高中数学 > 题目详情
已知矩阵A=
12
-14

(Ⅰ) 求A的逆矩阵A-1
(Ⅱ)求矩阵A的特征值λ1、λ2和对应的一个特征向量
α1
α2
考点:特征值与特征向量的计算,逆变换与逆矩阵
专题:选作题,矩阵和变换
分析:(Ⅰ)先求矩阵的行列式,再求A的逆矩阵A-1
(Ⅱ)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.
解答: 解:(Ⅰ)∵矩阵的行列式为
.
12
-14
.
=6≠0,
∴A的逆矩阵A-1=
2
3
-
1
3
1
6
1
6

(Ⅱ)矩阵A的特征多项式为f(λ)=
.
λ-1-2
1λ-4
.
2-5λ+6,
令f(λ)=0,得λ1=2,λ2=3,
当λ1=2时,得
α1
=
2
1
,当λ2=3时,得
α2
=
1
1
点评:本题主要考查来了矩阵特征值与特征向量的计算等基础知识,属于矩阵中的基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线x+2y-3=0关于直线x=a(a为常数)对称的直线为l,l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
的终点在以M(4,0),N(0,3)为端点的线段上,则向量|
OA
|的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F(-2,0)过点F的直线交椭圆于A,B两点.若AB的中点坐标为(-1,
2
2
),则E的方程为(  )
A、
x2
36
+
y2
32
=1
B、
x2
16
+
y2
12
=1
C、
x2
20
+
y2
16
=1
D、
x2
8
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx,判断函数F(x)=f(x)+f(x+
π
2
)的奇偶性并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图OPQ是半径为
2
,圆心角为
π
4
的扇形,ABCD是扇形OPQ的内接距形,A,B在OP上,点D在OQ上,点C在弧PQ上,记∠POQ=θ;
(Ⅰ)用含θ的式子表示AB的长;
(Ⅱ)记距形ABCD的面积为f(θ),求f(θ)的单调区间和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=2,a3+a5=10,则a7=(  )
A、5B、8C、10D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)
的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分条件;
④已知命题p:对任意的x∈R,都有sinx≤1,则?p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,则角C等于30°或150°.
其中所有真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,b,c与面积S的关系是S=
a2+b2-c2
4
,则∠C=(  )
A、30°B、60°
C、45°D、90°

查看答案和解析>>

同步练习册答案