【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是
A. 平方米 B. 平方米
C. 平方米 D. 平方米
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,根据经验,其次品率与日产量 (万件)之间满足关系, (其中为常数,且,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额 (万元)表示为日产量 (万件)的函数;
(2)当日产量为多少时,可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx).
(1)求函数f(x)的最小正周期及单调递减区间:
(2)将f(x)的图象向左平移个单位后得到函数g(x)的图象,若方程g(x)=m在区间[0,]上有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某重点中学100位学生在市统考中的理科综合分数,以, , , , , , 分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求理科综合分数的众数和中位数;
(3)在理科综合分数为, , , 的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在的学生中应抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点为坐标原点,焦点在轴的正半轴上,点是抛物线上的一点,以为圆心,2为半径的圆与轴相切,切点为.
(I)求抛物线的标准方程:
(Ⅱ)设直线在轴上的截距为6,且与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体中,点在上移动,点在上移动,,连接.
(1)证明:对任意,总有∥平面;
(2)当的长度最小时,求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求关于的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com