精英家教网 > 高中数学 > 题目详情
已知区域Ω={(x,y)|x+y≤10,x≥0,y≥0},A={(x,y)|x-y≥0,x≤5,y≥0},若向区域Ω上随机投1个点,求这个点落入区域A的概率P(A).
考点:几何概型
专题:计算题,概率与统计
分析:本题考查几何概型,作出Ω={(x,y)|x+y≤10,x≥0,y≥0}的区域,A={(x,y)|x-y≥0,x≤5,y≥0}的区域,结合图形分别计算区域的面积S,S1,然后代入公式即可.
解答: 解:如图.整个基本事件空间Ω可用腰长为10的等腰直角三角形的面积度量,而点落入区域A可用阴影部分所示三角形的面积度量,故所求事件的概率为
1
2
×5×5
1
2
×10×10
=
1
4
点评:本题主要考查了与面积有关的几何概率的去求解,解题的关键是熟练应用线性规划的知识作出各平面区域进而计算出面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将a,b都是整数的点(a,b)称为整点,若在圆x2+y2-6x+5=0内的整点中任取一点M,则点M到直线2x+y-12=0的距离大于
5
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“水”这个曾经人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x(x≤7)吨,应交水费为f(x).
(1)试求出函数f(x)的解析式;
(2)若本季度他交了12.6元,求他本季度实际用水多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程|5x-4|+a=0无解,|4x-3|+b=0有两个解,|3x-2|+c=0只有一个解,则化简|a-c|+|c-b|-|a-b|的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的增函数,若a∈R,则(  )
A、f(a)>f(2a)
B、f(a2)<f(a)
C、f(a+3)>f(a-2)
D、f(6)>f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
|x|
x
+|x|的图象如下图所示,正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn=1+11+111+…+
111…1
n个1
,则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,
2
)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k等于(  )
A、-
2
2
B、
2
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3,-cos(ωx)),
b
=(sin(ωx),
3
),其中ω>0,函数f(x)=
a
b
的最小正周期为π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c.且f(
A
2
)=
3

①求角A的大小.②求T=sin2A+sin2B+sin2C的范围.

查看答案和解析>>

同步练习册答案