精英家教网 > 高中数学 > 题目详情
13.计算:$\frac{cosα}{sin\frac{α}{2}cos\frac{α}{2}}$.

分析 利用三角函数的倍角公式进行求解即可.

解答 解::$\frac{cosα}{sin\frac{α}{2}cos\frac{α}{2}}$=$\frac{cosα}{\frac{1}{2}sinα}=\frac{2}{tanα}=2cotα$

点评 本题主要考查三角函数式的化简,利用三角函数的倍角公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.i为虚数单位,$\frac{i}{3+4i}$=(  )
A.3+4iB.4+3iC.$\frac{4}{25}$-$\frac{3}{25}$iD.$\frac{4}{25}$+$\frac{3}{25}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某空间几何体的三视图如右图所示,则该几何体的体积是(  )
A.16B.32C.32D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^{2}}{a^{2}}$+$\frac{y^{2}}{b^{2}}$=1(a>b>0)的左、右焦点为F1、F2,离心率为e,点P(x0,y0)在曲线C上,且不与左、右顶点重合,设∠F1PF2=α,|PF1|=r1,|PF2|=r2,|OP|=r.
(1)求证:①cosα≥1-2e2;②$\frac{1}{r_{1}}$+$\frac{1}{r_{2}}$≥$\frac{2}{a}$;③b≤r≤a(运用参数方程)
(2)若存在某点P使α=120°,${S}_{{△F}_{1}{PF}_{2}}$=4$\sqrt{3}$,曲线与圆x2+y2=36内切,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,前n项和为Sn
(1)如果数列{an}为等差数列,且对一切正整数n,满足$\frac{{S}_{2n}}{{S}_{n}}$=$\frac{4n+2}{n+1}$,求数列{an}的通项公式;
(2)如果数列{an}对一切正整数n,满足$\frac{{S}_{n+1}}{{S}_{n}}$=$\frac{n+2}{n}$,求数列{an}的通项公式;
(3)若数列{an}满足an+1=3an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知随机变量X~B(6,$\frac{\sqrt{2}}{2}$),则P(-2≤X≤5.5)=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,其前n项和为Sn,若$\frac{S_{2015}}{2015}$-$\frac{{S}_{10}}{10}$=2005,则等差数列{an}的公差d的值等于(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知M=$\frac{{C}_{2015}^{0}}{1}$+$\frac{{C}_{2015}^{1}}{2}$+$\frac{{C}_{2015}^{2}}{3}$+…+$\frac{{C}_{2015}^{2014}}{2015}$+$\frac{{C}_{2015}^{2015}}{2016}$,则M=(  )
A.$\frac{{2}^{2016}-1}{2016}$B.$\frac{{2}^{2016}}{2016}$C.$\frac{{2}^{2015}-1}{2015}$D.$\frac{{2}^{2015}}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对具有相关性的变量x、y,其样本中心为(2,3),若y与x的回归直线方程为$\widehat{y}=mx-\frac{3}{2}$,则m=$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案