精英家教网 > 高中数学 > 题目详情
5.在等差数列{an}中,其前n项和为Sn,若$\frac{S_{2015}}{2015}$-$\frac{{S}_{10}}{10}$=2005,则等差数列{an}的公差d的值等于(  )
A.1B.2C.-1D.-2

分析 由题意证出{$\frac{{S}_{n}}{n}$}为公差是$\frac{d}{2}$的等差数列,再由等差数列的通项公式结合$\frac{S_{2015}}{2015}$-$\frac{{S}_{10}}{10}$=2005求得d.

解答 解:∵数列{an}为等差数列,设其公差为d,则其前n项和为Sn=na1+$\frac{n(n-1)}{2}$d,
∴$\frac{{S}_{n}}{n}={a}_{1}+\frac{n-1}{2}d$,
∴$\frac{{S}_{n+1}}{n+1}-\frac{{S}_{n}}{n}=\frac{d}{2}$,
∴{$\frac{{S}_{n}}{n}$}为公差是$\frac{d}{2}$的等差数列,
∴$\frac{S_{2015}}{2015}$-$\frac{{S}_{10}}{10}$=2005×$\frac{d}{2}$=2005,
解得:d=2.
故选:B.

点评 本题考查了等差数列的性质,考查了等差数列的前n项和,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若$\left\{\begin{array}{l}{0≤x≤\frac{π}{2}}\\{sinx≤y≤cosx}\end{array}\right.$,则z=x+2y的取值范围是(  )
A.(0,$\frac{π}{6}$]B.[0,$\sqrt{3}$]C.[0,$\sqrt{3}$-$\frac{π}{6}$]D.[0,$\sqrt{3}$+$\frac{π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x,y满足不等式组$\left\{\begin{array}{l}x-y≥0\\ x+y≤a\\ y≥1\end{array}\right.$.若a=4,则z=2x+y的最大值为7;若不等式组所表示的平面区域面积为4,则a=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:$\frac{cosα}{sin\frac{α}{2}cos\frac{α}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(ax+1)+x3-x2-ax.
(1)若y=f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)若a=-1时,方程f(1-x)-(1-x)3=$\frac{b}{x}$有实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.当m为何值时,方程x2-4|x|+5=m;
(1)无解;
(2)有两个实数解;
(3)有三个实数解;
(4)有四个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)与抛物线C2:x2=4y有公共的焦点F.点A为椭圆C1与抛物线C2准线的交点之一,过A向抛物线C2引切线AB,切点为B,且点A,B都在y轴的右侧.
(Ⅰ)证明:FA⊥FB;
(Ⅱ)证明:直线AB是椭圆C1的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知b、c、d∈R,函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$bx2+cx+d在(0,1)上既有极大值又有极小值,则c2+(1+b)c的取值范围是(  )
A.(0,$\frac{1}{16}$)B.(0,$\frac{1}{16}$]C.(0,$\frac{1}{4}$)D.[0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)求三棱锥C-BED的高.

查看答案和解析>>

同步练习册答案