精英家教网 > 高中数学 > 题目详情
15.若$\left\{\begin{array}{l}{0≤x≤\frac{π}{2}}\\{sinx≤y≤cosx}\end{array}\right.$,则z=x+2y的取值范围是(  )
A.(0,$\frac{π}{6}$]B.[0,$\sqrt{3}$]C.[0,$\sqrt{3}$-$\frac{π}{6}$]D.[0,$\sqrt{3}$+$\frac{π}{6}$]

分析 作出不等式组对应的平面区域,利用z的几何意义结合导数求出切线斜率,即可得到结论.

解答 解:作出不等式组对应的平面区域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直线y=$-\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线经过点O时,
直线y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小,z=0,
当直线y=$-\frac{1}{2}x+\frac{z}{2}$与y=cosx相切时,直线的截距最大,此时z最大,
函数y=cosx的导数f′(x)=-sinx,
目标函数的斜率k=$-\frac{1}{2}$,
由-sinx=$-\frac{1}{2}$得sinx=$\frac{1}{2}$,
解得x=$\frac{π}{6}$,此时y=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,即切点坐标为($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),
此时z=$\frac{π}{6}$+2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$+$\frac{π}{6}$,
故z的取值范围是[0,$\sqrt{3}$+$\frac{π}{6}$],
故选:D.

点评 本题主要考查线性规划的应用,利用数形结合以及导数的几何意义求出切点坐标是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=sinx的定义域为[a,b],值域为[-1,$\frac{1}{2}$],则b-a的最大值是(  )
A.πB.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,则目标函数z=y-2x的最小值为(  )
A.2B.1C.-7D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.i为虚数单位,$\frac{i}{3+4i}$=(  )
A.3+4iB.4+3iC.$\frac{4}{25}$-$\frac{3}{25}$iD.$\frac{4}{25}$+$\frac{3}{25}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设Sn为数列{an}的前n项和,a1=1,a2=3,Sk+2+Sk-2Sk+1=2对任意正整数k成立,则an=2n-1,Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数$f(x)=\sqrt{|{x-2}|+|{x-a}|-2a}$若函数f(x)的定义域为R,试求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某空间几何体的三视图如右图所示,则该几何体的体积是(  )
A.16B.32C.32D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,其前n项和为Sn,若$\frac{S_{2015}}{2015}$-$\frac{{S}_{10}}{10}$=2005,则等差数列{an}的公差d的值等于(  )
A.1B.2C.-1D.-2

查看答案和解析>>

同步练习册答案