精英家教网 > 高中数学 > 题目详情
20.设Sn为数列{an}的前n项和,a1=1,a2=3,Sk+2+Sk-2Sk+1=2对任意正整数k成立,则an=2n-1,Sn=n2

分析 由数列递推式得到数列数列{an}为以2为公差的等差数列,然后直接由等差数列的通项公式和前n项和公式得答案.

解答 解:由Sk+2+Sk-2Sk+1=2,得
(Sk+2-Sk+1)-(Sk+1-Sk)=2,
即ak+2-ak+1=2,
∵k∈N*,∴从第二项起,数列{an}为以2为公差的等差数列,
又a1=1,a2=3,a2-a1=3-1=2也成立,
∴数列{an}为以2为公差的等差数列,
则an=1+2(n-1)=2n-1,
${S}_{n}=n+\frac{n(n-1)×2}{2}={n}^{2}$.
故答案为:2n-1,n2

点评 本题考查了数列递推式,考查了等差关系的确定,考查了等差数列的通项公式和前n项和公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.记无穷数列{an}的前n项a1,a2,…,an的最大项为An,第n项之后的各项an+1,an+2,…的最小项为Bn,令bn=An-Bn
(1)若数列{an}的通项公式为an=2n2-7n+6,写出b1,b2,并求数列{bn}的通项公式;
(2)若数列{bn}的通项公式为bn=1-2n,判断{an+1-an}是否等差数列,若是,求出公差;若不是,请说明理由;
(3)若数列{bn}为公差大于零的等差数列,求证:{an+1-an}是否为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b,x∈R,a>b>1>x>0,则下列不等式成立的是(  )
A.ax<bxB.xa>xbC.logxa>log${\;}_{{x}^{2}}$bD.logax>logbx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{2}{{e}^{x}+1}$+sinx(e为自然对数的底),则函数y=f(x)在区间[-$\frac{π}{3}$,$\frac{π}{3}$]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\left\{\begin{array}{l}{0≤x≤\frac{π}{2}}\\{sinx≤y≤cosx}\end{array}\right.$,则z=x+2y的取值范围是(  )
A.(0,$\frac{π}{6}$]B.[0,$\sqrt{3}$]C.[0,$\sqrt{3}$-$\frac{π}{6}$]D.[0,$\sqrt{3}$+$\frac{π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1.
(1)求函数f(x)的单调增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,f(A)=$\frac{1}{2}$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\left\{\begin{array}{l}-3{x^2}+4x,0≤x<1\\ f(x-1)+1,x≥1.\end{array}$则f(3)=3;当1≤x≤2时,f(x)=-3x2+10x-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a是实数,则“a2≠4”是“a≠2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.当m为何值时,方程x2-4|x|+5=m;
(1)无解;
(2)有两个实数解;
(3)有三个实数解;
(4)有四个实数解.

查看答案和解析>>

同步练习册答案