10£®¼ÇÎÞÇîÊýÁÐ{an}µÄǰnÏîa1£¬a2£¬¡­£¬anµÄ×î´óÏîΪAn£¬µÚnÏîÖ®ºóµÄ¸÷Ïîan+1£¬an+2£¬¡­µÄ×îСÏîΪBn£¬Áîbn=An-Bn£®
£¨1£©ÈôÊýÁÐ{an}µÄͨÏʽΪan=2n2-7n+6£¬Ð´³öb1£¬b2£¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}µÄͨÏʽΪbn=1-2n£¬ÅжÏ{an+1-an}ÊÇ·ñµÈ²îÊýÁУ¬ÈôÊÇ£¬Çó³ö¹«²î£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôÊýÁÐ{bn}Ϊ¹«²î´óÓÚÁãµÄµÈ²îÊýÁУ¬ÇóÖ¤£º{an+1-an}ÊÇ·ñΪµÈ²îÊýÁУ®

·ÖÎö £¨1£©ÊýÁÐ{an}µÄͨÏʽΪan=2n2-7n+6£¬a1=1£¬${a}_{n}=2£¨n-\frac{7}{4}£©^{2}$-$\frac{1}{8}$£¬n¡Ý2ʱΪµ¥µ÷µÝÔöÊýÁУ®¿ÉµÃA1=1£¬B1=a2=0£¬b1=1£¬Í¬Àí¿ÉµÃb2=A2-B2=a1-a3=-2£®¿ÉµÃÊýÁÐ{bn}µÄͨÏʽbn=An-Bn=an-an+1=-4n+5£®
£¨2£©ÉèdÊǷǸºÕûÊý£¬ÏÈÖ¤Ã÷£ºbn=-d£¨n=1£¬2£¬3¡­£©µÄ³ä·Ö±ØÒªÌõ¼þΪ{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ»¶øÊýÁÐ{bn}µÄͨÏʽΪbn=1-2n£¬¼´¿É{an+1-an}Êǹ«²îΪ2µÈ²îÊýÁУ®
£¨3£©ÓÉÓÚÊýÁÐ{an}µÝÔö£¬¿ÉµÃAn=an£¬Bn=an+1£¬bn=An-Bn=an-an+1=-£¨an+1-an£©£¬¼´¿ÉÖ¤Ã÷£®

½â´ð £¨1£©½â£ºÊýÁÐ{an}µÄͨÏʽΪan=2n2-7n+6£¬a1=1£¬${a}_{n}=2£¨n-\frac{7}{4}£©^{2}$-$\frac{1}{8}$£¬
n¡Ý2ʱΪµ¥µ÷µÝÔöÊýÁУ®
¡àA1=1£¬B1=a2=0£¬
b1=A1-B1=1-0=1£¬
ͬÀí¿ÉµÃb2=A2-B2=a1-a3=-2£®
¡àÊýÁÐ{bn}µÄͨÏʽbn=An-Bn=an-an+1=2n2-7n+6-[2£¨n+1£©2-7£¨n+1£©+6]=-4n+5£»
£¨2£©½â£ºÉèdÊǷǸºÕûÊý£¬ÏÈÖ¤Ã÷£ºbn=-d£¨n=1£¬2£¬3¡­£©µÄ³ä·Ö±ØÒªÌõ¼þΪ{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ»
³ä·ÖÐÔ£ºÉèdÊǷǸºÕûÊý£¬Èô{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ¬Ôòan=a1+£¨n-1£©d£¬
¡àAn=an=a1+£¨n-1£©d£¬Bn=an+1=a1+nd£¬
¡àdn=An-Bn=-d£¬£¨n=1£¬2£¬3£¬4¡­£©£®
±ØÒªÐÔ£ºÈôbn=An-Bn=-d£¬£¨n=1£¬2£¬3£¬4¡­£©£®¼ÙÉèakÊǵÚÒ»¸öʹak-ak-1£¼0µÄÏ
Ôòdk=Ak-Bk=ak-1-Bk¡Ýak-1-ak£¾0£¬ÕâÓëdn=-d¡Ü0Ïàì¶Ü£¬
¹Ê{an}ÊÇÒ»¸ö²»¼õµÄÊýÁУ®
¡àdn=An-Bn=an-an+1=-d£¬¼´ an+1-an=d£¬
¹Ê{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ®
¶øÊýÁÐ{bn}µÄͨÏʽΪbn=1-2n£¬
bn+1-bn=-2£¬
¡à{an+1-an}Êǹ«²îΪ2µÈ²îÊýÁУ®
£¨3£©Ö¤Ã÷£º¡ßÊýÁÐ{an}µÝÔö£¬£¨¿ÉÓ÷´Ö¤·¨Ö¤Ã÷£©£¬
¡àAn=an£¬Bn=an+1£¬
¡àbn=An-Bn=an-an+1=-£¨an+1-an£©£¬
¡ß{an+1-an}ÊǵȲîÊýÁУ¬
¡à{bn}ΪµÈ²îÊýÁУ®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÓ¦ÓᢵȲîÊýÁе͍Òå¼°ÆäͨÏʽ¡¢¡°Ð¶¨Ò塱£¬¿¼²éÁË·ÖÎöÎÊÌâÓë½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑ֪˫ÇúÏß${x^2}-\frac{y^2}{2}=1$µÄ½¹µãΪF1¡¢F2£¬µãMÔÚË«ÇúÏßÉÏÇÒ$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0£¬ÔòµãMµ½xÖáµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®$\frac{5}{3}$C£®$\sqrt{3}$D£®$\frac{{2\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=BC=2£¬AA1=3£¬¹ýA1¡¢C1¡¢BÈýµãµÄÆ½Ãæ½ØÈ¥³¤·½ÌåµÄÒ»¸ö½Çºó£¬µÃµ½ÈçÏÂËùʾµÄ¼¸ºÎÌåABCD-A1B1C1D1£®
£¨1£©Ç󼸺ÎÌåABCD-A1B1C1D1µÄÌå»ý£¬²¢»­³ö¸Ã¼¸ºÎÌåµÄ×óÊÓͼ£¨ABƽÐÐÖ÷ÊÓͼͶӰËùÔ򵀮½Ã棩£»
£¨2£©ÇóÒìÃæÖ±ÏßBC1ÓëA1D1Ëù³É½ÇµÄ´óС£¨½á¹ûÓ÷´Èý½Çº¯ÊýÖµ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èç¹ûa£¼b£¼0£¬ÄÇôÏÂÁв»µÈʽ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a2£¼abB£®-ab£¼-b2C£®$\frac{1}{a}£¼\frac{1}{b}$D£®$\frac{b}{a}£¾\frac{a}{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýy=sinxµÄ¶¨ÒåÓòΪ[a£¬b]£¬ÖµÓòΪ[-1£¬$\frac{1}{2}$]£¬Ôòb-aµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®¦ÐB£®$\frac{4¦Ð}{3}$C£®$\frac{5¦Ð}{3}$D£®2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬ÒÑÖªM£¬N·Ö±ðÊÇA1B1£¬BB1µÄÖе㣬¹ýM£¬N£¬C1µÄ½ØÃæ½ØÕý·½ÌåËùµÃµÄ¼¸ºÎÌ壬ÈçͼËùʾ£¬ÄÇô¸Ã¼¸ºÎÌåµÄ²àÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãÊÇ$F£¨{-\sqrt{2}\;£¬0}£©$£¬É϶¥µãÊÇB£¬ÇÒ|BF|=2£®¹ýµãP£¨0£¬-1£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô$\overrightarrow{MP}=3\overrightarrow{PN}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¼×¡¢ÒÒÁ½È˸÷½øÐÐÒ»´ÎÉä»÷£¬¼ÙÉèÁ½ÈË»÷ÖÐÄ¿±êµÄ¸ÅÂÊ·Ö±ðÊÇ0.6ºÍ0.7£¬ÇÒÉä»÷½á¹ûÏ໥¶ÀÁ¢£¬Ôò¼×¡¢ÒÒÖÁ¶àÒ»ÈË»÷ÖÐÄ¿±êµÄ¸ÅÂÊΪ0.58£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÉèSnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬a1=1£¬a2=3£¬Sk+2+Sk-2Sk+1=2¶ÔÈÎÒâÕýÕûÊýk³ÉÁ¢£¬Ôòan=2n-1£¬Sn=n2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸