精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{{\begin{array}{l}{({a-3})x+5,x≤1}\\{\frac{2a+1}{x},x>1}\end{array}}$是(-∞,+∞)上的减函数,那么a的取值范围为(-$\frac{1}{2}$,1].

分析 根据函数的单调性求出关于a的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{a-3<0}\\{a-3+5≥2a+1}\\{2a+1>0}\end{array}\right.$,
解得:-$\frac{1}{2}$<a≤1,
故答案为:(-$\frac{1}{2}$,1].

点评 本题考查了函数的单调性问题,考查一次函数以及反比例函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.“正三角形内部任意一点到3条边的距离之和为正三角形的高”类比到空间的一个结论为正四面体内部任意一点到4个面的距离之和为正四面体的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,∠BAD=90°,AD=$\sqrt{3}$,DC=2AB=2,E为BC中点.
(Ⅰ)求证:平面PBC⊥平面PDE
(Ⅱ)线段PC上是否存在一点F,使PA∥平面BDF?若存在,求$\frac{PF}{PC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知对数式log(a-2)(10-2a)(a∈N)有意义,则a的值为(  )
A.2<a<5B.3C.4D.3 或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,矩形ADEF中DE=1,且面ADEF⊥面ABCD.
(Ⅰ)求证:BD⊥平面ECD;
(Ⅱ)求D点到面CEB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|kx2-2x-1=0}只有一个元素,则实数k的取值集合为(  )
A.{-1}B.{0}C.{-1,0}D.(-∞,-1]∪{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lg[log${\;}_{\frac{1}{2}}}$(${\frac{1}{2}$x-1)]的定义域为集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(∁RB)∩A;
(2)若2a∈A,且log2(2a-1)∈B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,则“|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a,b是正奇数,数列{cn}(n∈N*)定义如下:c1=a,c2=b,对任意n≥3,cn是cn-1+cn-2的最大奇约数.数列{cn}中的所有项构成集合A.
(Ⅰ)若a=9,b=15,写出集合A;
(Ⅱ)对k≥1,令dk=max{c2k,c2k-1}(max{p,q}表示p,q中的较大值),求证:dk+1≤dk
(Ⅲ)证明集合A是有限集,并写出集合A中的最小数.

查看答案和解析>>

同步练习册答案