精英家教网 > 高中数学 > 题目详情
2.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,则“|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据向量数量积的定义和性质结合充分条件和必要条件的定义进行判断即可.

解答 解:若|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|,则等价为|$\overrightarrow{a}$+$\overrightarrow{b}$|2>|$\overrightarrow{a}$-$\overrightarrow{b}$|2
即|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$>|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2-2$\overrightarrow{a}$•$\overrightarrow{b}$,
即4$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$•$\overrightarrow{b}$>0成立,
反之,也成立,
即“|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的充要条件,
故选:C.

点评 本题主要考查充分条件和必要条件的判断,根据不向量数量积的应用是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4x+a•2x+3,a∈R
(1)当a=-4时,且x∈[0,2],求函数f(x)的值域;
(2)若f(x)>0在(0,+∞)对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{{\begin{array}{l}{({a-3})x+5,x≤1}\\{\frac{2a+1}{x},x>1}\end{array}}$是(-∞,+∞)上的减函数,那么a的取值范围为(-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:?c>0,方程x2-x+c=0 有解,则¬p为(  )
A.?c>0,方程x2-x+c=0无解B.?c≤0,方程x2-x+c=0有解
C.?c>0,方程x2-x+c=0无解D.?c<0,方程x2-x+c=0有解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos(2x-$\frac{π}{3}$)-cos2x.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,cosA=$\frac{13}{14}$,7a=3b,则B=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z满足(3+4i)z=1(i为虚数单位),则z的实部为$\frac{3}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,AE=$\frac{3}{2}$,cosB=$\frac{{2\sqrt{7}}}{7}$,∠ADB=$\frac{2π}{3}$.
(1)求AD的长;
(2)求△ADE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}2x-1,x>0\\{x^2}+x,x≤0\end{array}$,若函数g(x)=f(x)-m有三个零点,则实数m的取值范围是$(-\frac{1}{4},0]$.

查看答案和解析>>

同步练习册答案