| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 根据向量数量积的定义和性质结合充分条件和必要条件的定义进行判断即可.
解答 解:若|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|,则等价为|$\overrightarrow{a}$+$\overrightarrow{b}$|2>|$\overrightarrow{a}$-$\overrightarrow{b}$|2,
即|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$>|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2-2$\overrightarrow{a}$•$\overrightarrow{b}$,
即4$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$•$\overrightarrow{b}$>0成立,
反之,也成立,
即“|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的充要条件,
故选:C.
点评 本题主要考查充分条件和必要条件的判断,根据不向量数量积的应用是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?c>0,方程x2-x+c=0无解 | B. | ?c≤0,方程x2-x+c=0有解 | ||
| C. | ?c>0,方程x2-x+c=0无解 | D. | ?c<0,方程x2-x+c=0有解 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com