精英家教网 > 高中数学 > 题目详情
10.已知命题p:?c>0,方程x2-x+c=0 有解,则¬p为(  )
A.?c>0,方程x2-x+c=0无解B.?c≤0,方程x2-x+c=0有解
C.?c>0,方程x2-x+c=0无解D.?c<0,方程x2-x+c=0有解

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题p:?c>0,方程x2-x+c=0 有解,则¬p为?c>0,方程x2-x+c=0无解.
故选:A.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若三个内角A,B,C成等差数列,且a=$\sqrt{2}$,b=$\sqrt{3}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知对数式log(a-2)(10-2a)(a∈N)有意义,则a的值为(  )
A.2<a<5B.3C.4D.3 或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|kx2-2x-1=0}只有一个元素,则实数k的取值集合为(  )
A.{-1}B.{0}C.{-1,0}D.(-∞,-1]∪{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lg[log${\;}_{\frac{1}{2}}}$(${\frac{1}{2}$x-1)]的定义域为集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(∁RB)∩A;
(2)若2a∈A,且log2(2a-1)∈B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正方形ABCD边长为1,E是线段CD的中点,则$\overrightarrow{AE}$•$\overrightarrow{BD}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,则“|$\overrightarrow{a}$+$\overrightarrow{b}$|>|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数g(x)=x2-2(x∈R),f(x)=$\left\{{\begin{array}{l}{g(x)+x(x<g(x))}\\{g(x)-x(x≥g(x))}\end{array}}$,则f(x)的值域为$[-\frac{9}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数y=f(x)的定义域是[$\frac{1}{2}$,2],则函数y=f(log2x)的定义域为(  )
A.[-1,1]B.[1,2]C.[$\sqrt{2}$,4]D.[$\sqrt{2}$,2]

查看答案和解析>>

同步练习册答案