分析 (1)由已知利用特殊角的三角函数值,两角差的正弦函数公式可得cosA=cos($\frac{5π}{6}$-B),结合A,B为锐角,利用三角形内角和定理可求C的值.
(2)设∠ACD=α,延长CD到E,使CD=DE,则AEBC为平行四边形,在△ACE中,由正弦定理可得a=4sinα,b=4sin($\frac{π}{6}$-α),利用三角形面积公式,三角函数恒等变换的应用化简可得S△ABC=2sin(2α+$\frac{π}{3}$)-$\sqrt{3}$,利用正弦函数的性质可求△ABC面积的最大值.
解答 (本题满分为12分)
解:(1)∵2cosA+$\sqrt{3}$cosB=sinB,可得:cosA=$\frac{1}{2}$sinB-$\frac{\sqrt{3}}{2}$cosB=cos($\frac{5π}{6}$-B),…2分
又∵A,B为锐角,
∴0$<A<\frac{π}{2}$,$\frac{π}{3}$<$\frac{5π}{6}$-B<$\frac{5π}{6}$,
∴A=$\frac{5π}{6}$-B,A+B=$\frac{5π}{6}$,可得:C=π-$\frac{5π}{6}$=$\frac{π}{6}$.…5分
(2)设∠ACD=α,延长CD到E,使CD=DE,![]()
则AEBC为平行四边形,
在△ACE中,AC=b,AE=BC=α,CE=2,∠CAE=$\frac{5π}{6}$,∠AEC=$\frac{π}{6}$-α,
由正弦定理可得:$\frac{b}{sin(\frac{π}{6}-α)}$=$\frac{a}{sinα}$=$\frac{2}{sin\frac{5π}{6}}$,
所以,a=4sinα,b=4sin($\frac{π}{6}$-α),…7分
S△ABC=$\frac{1}{2}$absin∠ABC=$\frac{1}{2}×4sinα×4sin(\frac{π}{6}-α)$sin$\frac{π}{6}$
=4sinα•sin($\frac{π}{6}$-α)=2sinαcosα-2$\sqrt{3}$sin2α
=sin2α+$\sqrt{3}$cos2α-$\sqrt{3}$=2sin(2α+$\frac{π}{3}$)-$\sqrt{3}$,…11分
当α=$\frac{π}{12}$时,△ABC的面积取得最大值,最大值为2-$\sqrt{3}$.…12分
点评 本题主要考查了特殊角的三角函数值,两角差的正弦函数公式,三角形内角和定理,正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,综合性较强,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 8个 | C. | 16个 | D. | 32个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7.5 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3},1$ | B. | $-\sqrt{3},1$ | C. | $\sqrt{3},-1$ | D. | -3,-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com