精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a、b、c为角A、B、C所对的三边,已知b2+c2-a2=-bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,cos(A-C)+cosB=$\frac{\sqrt{3}}{2}$,求△ABC的面积.

分析 (1)由已知及余弦定理可求cosA=-$\frac{1}{2}$,结合范围A∈(0,π),即可求得A的值.
(2)由已知及三角函数恒等变换的应用可得sinAsinC=$\frac{\sqrt{3}}{4}$,进而可求sinC=$\frac{1}{2}$,结合范围C∈(0,$\frac{π}{3}$),可得C的值,可求B=$\frac{π}{6}$,由正弦定理解得c,利用三角形面积公式即可计算得解.

解答 解:(1)∵b2+c2-a2=-bc.
∴由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{2π}{3}$.
(2)由题意得cos(A-C)-cos(A+C)=$\frac{\sqrt{3}}{2}$,
∴sinAsinC=$\frac{\sqrt{3}}{4}$,
又∵sinA=$\frac{\sqrt{3}}{2}$,
∴sinC=$\frac{1}{2}$,
∵C∈(0,$\frac{π}{3}$),
∴C=$\frac{π}{6}$,B=$\frac{π}{6}$,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,解得c=1,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$.

点评 本题主要考查了余弦定理,三角函数恒等变换的应用,正弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,点M在线段EC上.
(Ⅰ)当点M为EC中点时,求证:BM∥平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为$\frac{\sqrt{6}}{6}$时,求棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥S-ABCD中,底面ABCD为菱形,E、P、Q分别是棱AD、SC、AB的中点,且SE⊥平面ABCD.
(1)求证:PQ∥平面SAD;
(2)求证:平面SAC⊥平面SEQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(2x-3)成立的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.样本容量为100的频率分布直方图如图所示,则样本数据落在[14,18]内的频数为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C的对边分别是a,b,c,若sinB=2sinA,且△ABC的面积为a2sinB,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0).
(1)当a=b=1时,证明:f(x)不是奇函数;
(2)设f(x)是奇函数,求a与b的值;
(3)在(2)的条件下,试证明函数f(x)的单调性,并解不等式f(1-m)+f(1+m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若已知A∩{-1,0,1}={0,1},且A∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A共有4个.

查看答案和解析>>

同步练习册答案