精英家教网 > 高中数学 > 题目详情

是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在轴上的双曲线渐近线方程为
(2)点到双曲线上动点的距离最小值为

存在双曲线的方程满足题中的两个条件.

解析试题分析:先根据(1)的条件设出双曲线的方程,再设双曲线上的动点,然后利用两点间的距离公式得出,结合,最后化简得到,根据二次函数的图像与性质确定的最小值(含),并由计算出的值,如果有解并满足即可写出双曲线的方程;如果无解,则不存在满足要求的双曲线方程.
试题解析:由(1)知,设双曲线为
在双曲线上,由双曲线焦点在轴上,

在双曲线上



关于的二次函数的对称轴为



所以存在双曲线的方程满足题中的两个条件.
考点:1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.

(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线的右焦点为,实轴长.
(1)求双曲线的方程
(2)若直线与双曲线恒有两个不同的交点,且为锐角(其中为原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,两条相交线段的四个端点都在抛物线上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C的顶点为O(0,0),焦点为F(0,1).

(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.

查看答案和解析>>

同步练习册答案