精英家教网 > 高中数学 > 题目详情
(2013•房山区二模)在△ABC中,角A,B,C所对的边分别是a,b,c.a=3, b=2,  A=
π
6
,则tanB=
2
4
2
4
分析:根据正弦定理,算出sinB=
bsinA
a
=
1
3
,由b<a得B是锐角,利用同角三角函数的平方关系算出cosB=
2
2
3
,再用商数关系算出tanB=
2
4
,即可得到本题答案.
解答:解:∵a=3, b=2,  A=
π
6

∴由正弦定理
a
sinA
=
b
sinB
,得sinB=
bsinA
a
=
1
3

∵b<a可得B是锐角,
∴cosB=
1-sin2B
=
2
2
3

因此,tanB=
sinB
cosB
=
1
3
2
2
3
=
2
4

故答案为:
2
4
点评:本题给出三角形ABC的两边和其中一边的对角,求另一个角的正切之值,着重考查了利用正弦定理解三角形和同角三角函数基本关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,则该函数的对称中心为
(
1
2
,1)
(
1
2
,1)
,计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)已知函数f(x)=(x2+x-a)e
xa
(a>0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)当x=-5时,f(x)取得极值.
①若m≥-5,求函数f(x)在[m,m+1]上的最小值;
②求证:对任意x1,x2∈[-2,1],都有|f(x1)-f(x2)|≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)一个几何体的三视图如图所示,则这个几何体的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)下列四个函数中,既是奇函数又在定义域上单调递增的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)已知数列{an}的前n项和为Sn,a1=1,2Sn=an+1,则Sn=(  )

查看答案和解析>>

同步练习册答案