精英家教网 > 高中数学 > 题目详情
已知是定义在上的奇函数,且当x<0时不等式成立,若,则大小关系是
A.B.c > b > aC.D.c > a >b
D

试题分析:根据题意,由于是定义在上的奇函数,且当x<0时不等式,那么说明xf(x)=g(x)在x<0是递减函数,且为偶函数,那么在x>0是增函数,因此再由>>=,以及函数单调性可知,不等式为c > a >b,故选D
点评:巧妙的构造函数,结合导数,判定函数单调性,进而得到结论,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数:.
(1) 当时①求的单调区间;
②设,若对任意,存在,使,求实数取值范围.
(2) 当时,恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则函数的零点个数为
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上单调递增,则实数的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).
(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数满足:①是偶函数;②在区间上是增函数.若,则的大小关系是(   )
A.B.C.D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,则               .

查看答案和解析>>

同步练习册答案