精英家教网 > 高中数学 > 题目详情
(2013•辽宁一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F,直线x=
a2
c
与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是(  )
分析:先通过联立方程组求出A,B坐标,根据△ABF为钝角三角形得到∠AFB>90°,可知∠AFD>45°,即DF<DA,再分别求出DF与DA长度,用含a,c的式子表示,因为离心率等于
c
a
,即可求出离心率的范围.
解答:解:双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的渐近线方程为y=±
b
a
x
联立方程组
y=±
b
a
x
x=
a2
c
,解得A(
a2
c
ab
c
),B(
a2
c
,-
ab
c
),
设直线x=
a2
c
与x轴交于点D
∵F为双曲线的右焦点,∴F(C,0)
∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA
∴c-
a2
c
ab
c
,b<a,c2-a2<a2
∴c2<2a2,e2<2,e<
2
又∵e>1
∴离心率的取值范围是1<e<
2

故选D
点评:本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知:函数f(x)=-x3+mx在(0,1)上是增函数.
(1)求实数m的取值的集合A;
(2)当m取集合A中的最小值时,定义数列{an}:满足a1=3,且an>0,an+1=
-3f(an)+9
-2
,求数列{an}的通项公式
(3)若bn=nan数列{bn}的前n项和为Sn,求证:Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知直线l是过点P(-1,2),方向向量为
n
=(-1,
3
)
的直线,圆方程ρ=2cos(θ+
π
3
)

(1)求直线l的参数方程
(2)设直线l与圆相交于M,N两点,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)命题“?x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知O是锐角△ABC的外接圆圆心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=
sinθ
sinθ
.(用θ表示)

查看答案和解析>>

同步练习册答案