精英家教网 > 高中数学 > 题目详情
(2013•辽宁一模)已知:函数f(x)=-x3+mx在(0,1)上是增函数.
(1)求实数m的取值的集合A;
(2)当m取集合A中的最小值时,定义数列{an}:满足a1=3,且an>0,an+1=
-3f(an)+9
-2
,求数列{an}的通项公式
(3)若bn=nan数列{bn}的前n项和为Sn,求证:Sn
1
2
分析:(1)由函数f(x)是增函数,利用导数得m≥3x2对任意x∈(0,1)恒成立,从而求出m的范围,即求出集合A;
(2)由(1)中的m的最小值为3,得到f′(x),从而将an+1=
-3f(an)+9
-2
变形得到数列{an-1}是首项为2,公比为3的等比数列,即可求数列{an}的通项公式;
(3)由(2)可求bn=nan=2n•3n-1+nSn=2(1•30+2•31+3•32+…+n•3n-1)+(1+2+3+…+n),再利用错位相减法化简得到Sn=
1
2
+
(2n-1)3n
2
+
(1+n)n
2
,显然sn
1
2
,从而得证
解答:解:(1)f′(x)=-3x2+m≥0对任意x∈(0,1)恒成立,
所以:m≥3x2对任意x∈(0,1)恒成立,得m≥3即A=[3,+∞)
(2)由m=3得:f(x)=-x3+3x?f′(x)=-3x2+3
所以:an+1=
-3(-3an2+3)+9
-2…(an>0)

得:an+1-1=3(an-1)所以数列{an-1}是首项为2,公比为3的等比数列
所以:an-1=2•3n-1?an=2•3n-1+1
(3)bn=nan=2n•3n-1+nSn=2(1•30+2•31+3•32+…+n•3n-1)+(1+2+3+…+n)
令:Tn=1•30+2•31+3•32+…+n•3n-1
3 Tn=1•31+2•32+…+(n-1)•3n-1+n•3n
-2 Tn=30+31+32+…+3n-1-n•3n=
1•(1-3n)
-2
-n•3n=
1-3n+2n3n
-2

所以Tn=
1+(2n-1)3n
4
Sn=
1
2
+
(2n-1)3n
2
+
(1+n)n
2
1
2
点评:此题考查导数的应用及数列求和常用的方法--错位相减法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知直线l是过点P(-1,2),方向向量为
n
=(-1,
3
)
的直线,圆方程ρ=2cos(θ+
π
3
)

(1)求直线l的参数方程
(2)设直线l与圆相交于M,N两点,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)命题“?x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F,直线x=
a2
c
与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁一模)已知O是锐角△ABC的外接圆圆心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=
sinθ
sinθ
.(用θ表示)

查看答案和解析>>

同步练习册答案