精英家教网 > 高中数学 > 题目详情
双曲线x2-
y2
3
=1上两点A、B关于直线y=-x+1对称,则直线AB方程为(  )
A、y=x
B、y=x+1
C、y=x-1
D、y=x+
1
3
考点:直线与圆锥曲线的关系
专题:计算题,圆锥曲线的定义、性质与方程
分析:设直线AB方程为y=x+b,代入x2-
y2
3
=1,利用韦达定理求出AB中点的坐标,代入y=-x+1,可得b,即可求出直线AB方程.
解答: 解:设直线AB方程为y=x+b,
代入x2-
y2
3
=1可得2x2-2bx-b2-3=0,
∴AB中点的坐标为(b,2b),
代入y=-x+1,可得b=
1
3

∴直线AB方程为y=x+
1
3

故选:D.
点评:本题考查直线AB方程,考查韦达定理的运用,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=-
4
5
,并且α是第三象限角,那么tanα的值等于(  )
A、-
3
4
B、
3
4
C、-
4
3
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P为圆O的弦AB上的一点,连接PO,过点P作PC⊥OP,且PC交圆O于C.若AP=4,PC=2,则PB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+1,设a≤-2,求不等式f(x)≤a+5-4x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且f(x+2)=f(x)对任意实数x都成立,则f(2014)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“存在x0∈R,2 x0≤0”的否定是(  )
A、不存在x0∈R,2 x0>0
B、存在x0∈R,2 x0≥0
C、对任意的x∈R,2x≤0
D、对任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以椭圆
x2
a2
+y2
=1的右焦点F2为圆心,1-c为半径作圆F2(其中c为已知椭圆的半焦距),过椭圆上一点P作此圆的切线,切点为T.
(Ⅰ)若a=
5
4
,P为椭圆的右顶点,求切线长|PT|;
(Ⅱ)设圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A,B两点,若OA⊥OB,且|PT|≥
3
2
(a-c)恒成立,求直线l被圆F2所截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)的导函数为f′(x),当x<0时,f(x)满足2f(x)+xf′(x)<x,则f(x)在R上的零点个数为(  )
A、1B、3C、5D、1或3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、命题“设a,b,c∈R,若ac2>bc2则a>c”的逆命题为真命题
B、f(x)=
x+1
x-1
,g(x)=
(x+1)(x-1)
,则f(x)和g(x)为同一函数
C、设p:“所有正数的对数均为正数”,q:“sin3>cos3”,则(¬p)∧q为真
D、命题“?x∈R,x2-2x+3>0”的否定是“?x∈R,x2-2x+3<0”.

查看答案和解析>>

同步练习册答案