精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的奇函数,且f(x+2)=f(x)对任意实数x都成立,则f(2014)的值为
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据奇函数的性质求出f(0),再根据函数是周期函数,周期是2,f(2014)=(1007×2+0)=f(0)=0,.
解答: 解:因为f(x)是定义在R上的奇函数,
所以f(0)=0,
又f(x+2)=f(x),
所以f(x)的周期是2,
所以f(2014)=(1007×2+0)=f(0)=0,
故答案为:0.
点评:本题主要考查函数的奇偶性和周期性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与集合{x∈N|x<4}相等一个集合是(  )
A、{1,2,3}
B、{0,1,2,3}
C、{1,2,3,4}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+bx+c的图象的对称轴为直线x=2,则(  )
A、f(0)<f(1)<f(3)
B、f(3)<f(1)<f(0)
C、f(3)<f(1)=f(0)
D、f(0)<f(1)=f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,z>0,求证:(
y
x
+
z
x
)(
x
y
+
z
y
)(
x
z
+
y
z
)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=loga(2-logax)在[
1
4
,4]上单调递减,则正实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-
y2
3
=1上两点A、B关于直线y=-x+1对称,则直线AB方程为(  )
A、y=x
B、y=x+1
C、y=x-1
D、y=x+
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
2
-2x
的定义域是(  )
A、(-∞,-1]
B、(-∞,0)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
1
3
x3-
1
2
x2+
1
2
在(0,+∞)的值域为M,g(x)=(x+1)2+a在(-∞,+∞)的值域为N,若N⊆M,则实数a的取值范围是(  )
A、a≥
1
2
B、a≤
1
2
C、a≥
1
3
D、a≤
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log0.5(4x-3)
的定义域为A,函数g(x)=2x(-1≤x≤m)的值域为B.
(1)当m=1时,求A∩B;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案