精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+(b+1)x+b-1,且a∈(0,4),则对于任b∈R,函数F(x)=f(x)-x总有两个不同的零点的概率是(  )
A、
1
3
B、
1
4
C、
2
3
D、
3
4
考点:几何概型
专题:计算题
分析:若函数F(x)=f(x)-x总有两个不同的零点,则对应的方程F(x)=f(x)-x=0总有两个不同的根,根据根的个数与△的关系,求出满足条件的a的范围,结合已知中a∈(0,4),可是答案.
解答: 解:若函数F(x)=f(x)-x总有两个不同的零点
则方程F(x)=f(x)-x=ax2+bx+b-1=0总有两个不同的根
即b2-4a(b-1)=b2-4ab+4a>0恒成立
即16a2-16a<0,
解得a∈(0,1)
又∵a∈(0,4),
∴函数F(x)=f(x)-x总有两个不同的零点的概率
1
4

故选B
点评:本题考查的知识点是几何概型,其中根据已知求出函数F(x)=f(x)-x总有两个不同的零点的a的范围是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:
A型车
出租天数 1 2 3 4 5 6 7
车辆数 5 10 30 35 15 3 2
B型车
出租天数 1 2 3 4 5 6 7
车辆数 14 20 20 16 15 10 5
( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
(-x2+3x+10)
的增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义行列式运算:
.
a1a2
a3a4
.
=a1a4-a2a3,将函数f(x)=
.
3
cosx
1sinx
.
的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.已知当x∈[1,2]时,f(x)=logax.
(1)求x∈[-1,1]时,函数f(x)的表达式;
(2)若函数f(x)的最大值为
1
2
,在区间[-1,3]上,解关于x的不等式f(x)>
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意的x∈R,函数f(x)满足f(x+1)=-f(x),且f(2013)=-2013,则f(-1)=(  )
A、1B、-1
C、2013D、-2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.
(1)求证:f(x)在R上是增函数;
(2)当f(3)=5时,解不等式:f(a2-2a-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆M(焦点在x轴上)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A、B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an=SnSn-1(n≥2,Sn≠0),a1=
2
9

(Ⅰ)求证:数列{
1
Sn
}
为等差数列;
(Ⅱ)求满足an<0的自然数n的集合.

查看答案和解析>>

同步练习册答案