精英家教网 > 高中数学 > 题目详情
已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.
(1)求证:f(x)在R上是增函数;
(2)当f(3)=5时,解不等式:f(a2-2a-2)<3.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)直接设x1<x2,根据x>0,f(x)>2得到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-2>2+f(x1)-2=f(x1),即可得到结论;
(2)先根据f(3)=5以及f(x)+f(y)=f(x+y)+2可得到f(1)=3,再把所求不等式转化为a2-2a-2<1,解之即可.
解答: 解:(1)设x1<x2,则x2-x1>0,
∵x>0,f(x)>2;
∴f(x2-x1)>2;
又f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-2>2+f(x1)-2=f(x1),
即f(x2)>f(x1).
所以:函数f(x)为单调增函数
(2)∵f(3)=f(2+1)=f(2)+f(1)-2=[f(1)+f(1)-2]+f(1)-2=3f(1)-4=5
∴f(1)=3.
即f(a2-2a-2)<3⇒f(a2-2a-2)<f(1)
∴a2-2a-2<1⇒a2-2a-3<0
解得:-1<a<3.
点评:本题主要考查了抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取一球,颜色为黑色的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
均为单位向量,若它们的夹角是60°,则|
a
-3
b
|等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(b+1)x+b-1,且a∈(0,4),则对于任b∈R,函数F(x)=f(x)-x总有两个不同的零点的概率是(  )
A、
1
3
B、
1
4
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果a
1
2
=b
(a>0,且a≠1),则(  )
A、log
 
1
2
a
=b
B、log
 
b
a
=
1
2
C、log 
1
2
b=a
D、log 
1
2
a=b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,其正视图和侧视图是两个全等的等腰梯形,上底边长为2,
下底边长为6,腰长为5,则该几何体的侧面积为(  )
A、10πB、20π
C、30πD、40π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
lim
x→∞
ax不存在(a>0),则
lim
x→∞
1-ax
1+ax
的值为
(  )
A、-1B、0C、1D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,sin
x
2
),且x∈[-
π
6
π
3
]

(1)求
a
b
及|
a
+
b
|

(2)若f(x)=
a
b
-|
a
+
b
|,求f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β都是锐角,cos2α=-
7
25
,cos(α+β)=
5
13
,则sinβ=(  )
A、
16
65
B、
13
65
C、
56
65
D、
33
65

查看答案和解析>>

同步练习册答案