精英家教网 > 高中数学 > 题目详情
已知函数(为实数)有极值,且在处的切线与直线平行.
(1)求实数的取值范围;
(2)是否存在实数,使得函数的极小值为,若存在,求出实数的值;若不存在,请说明理由;
(3)设,的导数为,令
求证:
(1)  (2)存在.  (3)略

(1)根据极值的信息,则选用导数法,先求f'(x),再由f(x)有极值,可有=a2-4b>0,又由在x=-1处的切线与直线x-y+1=0平行,可得f'(-1)=1-a+b=1从而求解
(2)先假存在,则根据条件,则有关于a的不等式,进而得到范围。
(3)构造函数利用导数的思想求解函数的最值得到证明
(1)∵,∴
由题意∴     ①      ……2分
有极值,∴方程有两个不等实根.
、   ∴.    ②
由①、②可得,.  ∴
故实数的取值范围是  …2分
(2)存在.……………1分   
由(1)令


时,取极小值,则=,
……………………………………………………2分
,即 (舍).……………………1分


∴存在实数,使得函数的极小值为1  ………1分
(3)∵,
  …….l分




∴其中等号成立的条件为………………3分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)当时,证明是增函数;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为实数,的导函数.
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)已知函数()  
(1)求函数的极大值和极小值;
(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 当时, 求函数的单调增区间;
(Ⅱ) 求函数在区间上的最小值;
(Ⅲ) 设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.   
(1)设函数,若在区间是单调函数,求的取值范围;
(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数),使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(Ⅰ)若函数的图象在点处的切线与直线平行,求实数的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在[0,3]上的最大值,最小值分别是   (   )
A.5,-15B.5,-4C.-4,-15D.5,-16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数,设其导函数,当时,恒有,令,则满足的实数x的取值范围是(   )
A.(-1,2)B.C.D.(-2,1)

查看答案和解析>>

同步练习册答案