科目:高中数学 来源: 题型:
已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.
(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;
(2)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求
数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知各项均为正数的
数列{an}的前n项和为Sn,满足8Sn=a
+4an+3(n∈N
*),且a1,a2,a7依次是等比数列{bn}的前三项.
(1)求数列{an}及{bn}的通项公式;
(2)是否存在常数a>0且a≠1,使
得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有2名来自莫斯科国立大学,有4名来自圣彼得堡国立大学,现从这6名志愿者中随机抽取2人,至少有1名志愿者来自莫斯科国立大学的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在△ABC中,a、b、c分别为角A、B、C所对的边,且
(2b+c)cosA+acosC =0
(I)求角A的大小:
(II)求
的最大值,并求取得最大值时角 B.C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.
(1)求证:AD//平面BFC;
(2)求二面角A- DE -F的平面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com