| A. | $-\frac{n+1}{2n+1}$ | B. | $-\frac{n+1}{n+2}$ | C. | $-\frac{{{2^n}-1}}{n+2}$ | D. | $\frac{7-5n}{7n-10}$ |
分析 Sn+$\frac{1}{S_n}$+2=an(n≥2),+2=an(n≥2),Sn-an=Sn-1,可得Sn=-$\frac{1}{2+{S}_{n-1}}$,由a1=-$\frac{2}{3}$,即S1=-$\frac{2}{3}$,可得S2=-$\frac{1}{2-\frac{2}{3}}$=-$\frac{3}{4}$,同理可得:S3=-$\frac{4}{5}$,猜想:Sn=-$\frac{n+1}{n+2}$.利用数学归纳法来证明:即可得出.
解答 解:∵Sn+$\frac{1}{S_n}$+2=an(n≥2),Sn-an=Sn-1,
∴Sn=-$\frac{1}{2+{S}_{n-1}}$,
∵a1=-$\frac{2}{3}$,即S1=-$\frac{2}{3}$,
∴S2=-$\frac{1}{2-\frac{2}{3}}$=-$\frac{3}{4}$,同理可得:S3=-$\frac{4}{5}$,
猜想:Sn=-$\frac{n+1}{n+2}$.
下面用数学归纳法来证明:
①当n=1时,显然成立;
②假设当n=k时,有Sk=-$\frac{k+1}{k+2}$,
则Sk+1=-$\frac{1}{2+{S}_{k}}$=-$\frac{1}{2-\frac{k+1}{k+2}}$=-$\frac{k+2}{k+3}$.
因此n=k+1时,猜想成立.
综上可得:?n∈N*,Sn=-$\frac{n+1}{n+2}$成立.
故选:B.
点评 本题考查了数列递推关系、数学归纳法、方程的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7倍 | B. | 5倍 | C. | 4倍 | D. | 3倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=2015时,该命题成立 | B. | n=2017时,该命题成立 | ||
| C. | n=2015时,该命题不成立 | D. | n=2017时,该命题不成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com