精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的前n项和为Sn,a1=-$\frac{2}{3}$,满足Sn+$\frac{1}{S_n}$+2=an(n≥2),则Sn=(  )
A.$-\frac{n+1}{2n+1}$B.$-\frac{n+1}{n+2}$C.$-\frac{{{2^n}-1}}{n+2}$D.$\frac{7-5n}{7n-10}$

分析 Sn+$\frac{1}{S_n}$+2=an(n≥2),+2=an(n≥2),Sn-an=Sn-1,可得Sn=-$\frac{1}{2+{S}_{n-1}}$,由a1=-$\frac{2}{3}$,即S1=-$\frac{2}{3}$,可得S2=-$\frac{1}{2-\frac{2}{3}}$=-$\frac{3}{4}$,同理可得:S3=-$\frac{4}{5}$,猜想:Sn=-$\frac{n+1}{n+2}$.利用数学归纳法来证明:即可得出.

解答 解:∵Sn+$\frac{1}{S_n}$+2=an(n≥2),Sn-an=Sn-1
∴Sn=-$\frac{1}{2+{S}_{n-1}}$,
∵a1=-$\frac{2}{3}$,即S1=-$\frac{2}{3}$,
∴S2=-$\frac{1}{2-\frac{2}{3}}$=-$\frac{3}{4}$,同理可得:S3=-$\frac{4}{5}$,
猜想:Sn=-$\frac{n+1}{n+2}$.
下面用数学归纳法来证明:
①当n=1时,显然成立;
②假设当n=k时,有Sk=-$\frac{k+1}{k+2}$,
则Sk+1=-$\frac{1}{2+{S}_{k}}$=-$\frac{1}{2-\frac{k+1}{k+2}}$=-$\frac{k+2}{k+3}$.
因此n=k+1时,猜想成立.
综上可得:?n∈N*,Sn=-$\frac{n+1}{n+2}$成立.
故选:B.

点评 本题考查了数列递推关系、数学归纳法、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.把67化为二进制数为(  )
A.1 100 001(2)B.1 000 011(2)C.110 000(2)D.1 000 111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知复数z=1+i(i为虚数单位),a、b∈R,
(Ⅰ)若$ω={z^2}+3\overline z-4$,求|ω|;
(Ⅱ)若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知 (a+b+c)(a+b-c)=3ab
(1)求角C;
(2)若边c=2,S△ABC=$\frac{{\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一组数据2,x,4,5,10的平均值是5,则此组数据的标准差是$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{x^2}{12}+\frac{y^2}{3}=1$的左、右焦点分别为F1、F2,点P在椭圆上,且点P的横坐标为3,则|PF1|是|PF2|的(  )
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某个自然数有关的命题,如果当n=k+1(n∈N*)时,该命题不成立,那么可推得n=k时,该命题不成立.现已知当n=2016时,该命题成立,那么,可推得(  )
A.n=2015时,该命题成立B.n=2017时,该命题成立
C.n=2015时,该命题不成立D.n=2017时,该命题不成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点A(x,y)是675°角终边上异于原点的一点,则$\frac{y}{x}$的值为(  )
A.1B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,边a,b的长是方程x2-5x+6=0的两个根,C=60°,求边c的长.

查看答案和解析>>

同步练习册答案