精英家教网 > 高中数学 > 题目详情
8.点A(x,y)是675°角终边上异于原点的一点,则$\frac{y}{x}$的值为(  )
A.1B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

分析 直接利用任意角的三角函数,求解即可.

解答 解:由题意,角675°的终边为点A(x,y),
那么:tan675°=$\frac{y}{x}$,
可得:$\frac{y}{x}$=tan(720°-45°)=-tan45°=-1.
故选:B.

点评 本题考查任意角的三角函数的定义,和诱导公式的化简,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.我校兼程楼共有5层,每层均有两个楼梯,由一楼到五楼的走法(  )
A.10种B.16种C.25种D.32种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和为Sn,a1=-$\frac{2}{3}$,满足Sn+$\frac{1}{S_n}$+2=an(n≥2),则Sn=(  )
A.$-\frac{n+1}{2n+1}$B.$-\frac{n+1}{n+2}$C.$-\frac{{{2^n}-1}}{n+2}$D.$\frac{7-5n}{7n-10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知a,b,c∈R,且2a+2b+c=8,求(a-1)2+(b+2)2+(c-3)2的最小值.
(2)请用数学归纳法证明:(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点$(\sqrt{2},0)$引直线l与曲线y=$\sqrt{1-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积取得最大值时,直线l的倾斜角为150°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)一个正方体的顶点都在球面上,它的棱长是2cm,求球的表面积.
(2)已知各面均为等边三角形的四面体S-ABC的棱长为1,求它的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于函数f(x)=2sin(3x-$\frac{3}{4}$π),以下说法:①其最小正周期为$\frac{2π}{3}$;②图象关于点($\frac{π}{4}$,0)对称;③直线x=-$\frac{π}{4}$是其一条对称轴.其中正确的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知曲线C的极坐标方程为ρ=2cosθ,则曲线C上的点到直线$\left\{\begin{array}{l}{x=-1+t}\\{y=2t}\end{array}\right.$(t为参数)的距离的最小值为$\frac{4\sqrt{5}}{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,${(\frac{1}{3})^x}$>0”的否定是(  )
A.?x∈R,${(\frac{1}{3})^x}<0$B.?x∈R,${(\frac{1}{3})^x}≤0$C.?x∈R,${(\frac{1}{3})^x}>0$D.?x∈R,${(\frac{1}{3})^x}≤0$

查看答案和解析>>

同步练习册答案