分析 (1)使用柯西不等式证明;
(2)先验证n=2成立,假设n=k成立,推导n=k+1成立即可.
解答 解:(1)由柯西不等式得:
(4+4+1)×[(a-1)2+(b+2)2+(c-3)2]≥[2(a-1)+2(b+2)+c-3]2,
∴9[(a-1)2+(b+2)2+(c-3)2]≥(2a+2b+c-1)2.
∵2a+2b+c=8,∴(a-1)2+(b+2)2+(c-3)2≥$\frac{49}{9}$,
∴(a-1)2+(b+2)2+(c-3)2的最小值是$\frac{49}{9}$.
(2)证明:①当n=2时,左边=1-$\frac{1}{4}$=$\frac{3}{4}$,右边=$\frac{2+1}{2×2}$=$\frac{3}{4}$,所以等式成立.
②假设当n=k(k≥2,k∈N+)时,等式成立,
即 (1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{k}^{2}}$)=$\frac{k+1}{2k}$(k≥2,k∈N+).
当n=k+1时,(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{k}^{2}}$)(1-$\frac{1}{(k+1)^{2}}$)
=$\frac{k+1}{2k}$•$\frac{{k}^{2}+2k}{(k+1)^{2}}$=$\frac{k+2}{2(k+1)}$=$\frac{(k+1)+1}{2(k+1)}$,
∴当n=k+1时,等式成立.
∴对n≥2,n∈N+时,等式成立.
点评 本题考查了柯西不等式的应用,属于归纳法证明,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}\overrightarrow a+\overrightarrow b$ | B. | -$\frac{1}{2}\overrightarrow a+\overrightarrow b$ | C. | $\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D. | $\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7倍 | B. | 5倍 | C. | 4倍 | D. | 3倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=2015时,该命题成立 | B. | n=2017时,该命题成立 | ||
| C. | n=2015时,该命题不成立 | D. | n=2017时,该命题不成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com