| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 计算|$\overrightarrow{a}$$+\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2|$\overrightarrow{a}$|得出|$\overrightarrow{a}$|,|$\overrightarrow{b}$|的关系和$\overrightarrow{a}•\overrightarrow{b}$=0,计算($\overrightarrow{a}+\overrightarrow{b}$)$•\overrightarrow{a}$,代入平面向量的数量积公式即可得出结论.
解答 解:∵|$\overrightarrow{a}$$+\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,
∴${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=4${\overrightarrow{a}}^{2}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=0,${\overrightarrow{b}}^{2}$=3${\overrightarrow{a}}^{2}$,
∴($\overrightarrow{a}+\overrightarrow{b}$)$•\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•\overrightarrow{b}$=${\overrightarrow{a}}^{2}$,
∴cos<$\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{a}$>=$\frac{(\overrightarrow{a}+\overrightarrow{b})•\overrightarrow{a}}{|\overrightarrow{a}+\overrightarrow{b}|•|\overrightarrow{a}|}$=$\frac{|\overrightarrow{a}{|}^{2}}{2|\overrightarrow{a}{|}^{2}}$=$\frac{1}{2}$.
∴向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{3}$.
故选B.
点评 本题考查了平面向量的数量积运算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com