精英家教网 > 高中数学 > 题目详情

已知函数,若,则在同一坐标系内的图象可能是

A.         B.          C.          D.


解析:

,可排除B、C,由的单调性相反可排除D,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知函数f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则下列说法正确的是
②④
(填序号).
①f(x)=g(x);                   ②f(x)-g(x)为常数函数;
③f(x)+g(x)为常数函数;         ④f(x)和g(x)的图象没有公共点或重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
1
x

(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足f(x)≤g(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=lnx,g(x)=1-
1
x

(1)试探求f(x)与g(x)是否存在“左同旁切线”,若存在,请求出左同旁切线方程;若不存在,请说明理由.
(2)设P(x1,f(x1)),Q(x2,f(x2))是函数f(x)图象上任意两点,0<x1<x2,且存在实数x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,证明:x1<x3<x2

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二函数的图像与性质练习卷(解析版) 题型:选择题

若直角坐标平面内的两点P、Q满足①P、Q都在函数y=f(x)的图像上;②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).

已知函数f(x)=则此函数的“友好点对”有(  )

A.0对    B.1对

C.2对    D.3对

 

查看答案和解析>>

同步练习册答案